The role of intestinal microbiota in the development of complications in pregnant women with gestational diabetes

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Gestational diabetes mellitus (GDM) has been declared as one of the pandemics of our time and its prevalence is 5–20% in the European population. It causes the search for new pathogenetic risk factors in order to develop effective measures for the prevention and treatment of this disease. The intestinal microbiota plays an important role in maintaining the basic functions in the human body — metabolic, protective and trophic, and it undergoes significant changes during pregnancy. It has now been proven that dysbiosis alters intestinal metabolism and can lead to the development of diabetes. The direct relationships between intestinal microflora species and circulating levels of insulin, triglycerides and very-low-density lipoproteins were found. In a number of studies, associations of various concentrations of intestinal microbiota metabolites with the probability of developing GDM were analyzed. Studies conducted in a group of women with complicated pregnancy revealed changes in the diversity and structure of the intestinal microbiota in women with preeclampsia and arterial hypertension. Therefore, all authors emphasize the need for studies that expand our understanding of the relationship of various intestinal microbiota disorders with the risk of developing GDM and its specific progressing.

About the authors

Tatyana A. Zinina

Women’s Consultation No. 22

Author for correspondence.
Email: zininat@mail.ru

MD

Russian Federation, Saint Petersburg

Alyona V. Tiselko

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: alenadoc@mail.ru
ORCID iD: 0000-0002-2512-833X
SPIN-code: 5644-9891

MD, PhD, DSci (Medicine), Leading Researcher

Russian Federation, Saint Petersburg

Maria I. Yarmolinskaya

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott; North-Western State Medical University named after I.I. Mechnikov

Email: m.yarmolinskaya@gmail.com
ORCID iD: 0000-0002-6551-4147
SPIN-code: 3686-3605
Scopus Author ID: 7801562649
ResearcherId: P-2183-2014

MD, PhD, DSci (Medicine), Professor, Professor of the Russian Academy of Sciences, Head of the Department of Gynecology and Endocrinology, Head of the Diagnostics and Treatment of Endometriosis Center; Professor. The Department of Obstetrics and Gynecology

Russian Federation, Saint Petersburg

References

  1. Sacks DA, Hadden DR, Maresh M, et al. Frequency of gestational diabetes mellitus at collaborating centers based on IADPSG consensus panel-recommended criteria: The Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. Diabetes Care. 2012;35(3):526-528. https://doi.org/10.2337/dc11-1641.
  2. Schneider S, Hoeft B, Freerksen N, et al. Neonatal complications and risk factors among women with gestational diabetes mellitus. Acta Obstet Gyn Scan. 2011;90(3):233-237. https://doi.org/10.1111/j.1600-0412.2010. 01040.x.
  3. Айламазян Э.К., Абашова Е.И., Аржанова О.Н., и др. Сахарный диабет и репродуктивная система женщины / под ред. Э.К. Айламазяна. – М.: ГЭОТАР-Медиа, 2017. – 432 с. [Aylamazyan EK, Abashova EI, Arzhanova ON, et al. Sakharnyy diabet i reproduktivnaya sistema zhenshchiny. Ed. by E.K. Aylamazyan. Moskow: GEOTAR-Media; 2017. 432 р. (In Russ.)]
  4. Desoye G, Nolan CJ. The fetal glucose steal: An underappreciated phenomenon in diabetic pregnancy. Diabetologia. 2016;59(6):1089-1094. https://doi.org/10.1007/s00125-016-3931-6.
  5. Koren O, Goodrich JK, Cullender TC, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150(3):470-480. https://doi.org/10.1016/j.cell.2012.07.008.
  6. Gomez-Arango LF, Barrett HL, McIntyre HD, et al. Connections between the gut microbiome and metabolic hormones in early pregnancy in overweight and obese women. Diabetes. 2016;65(8):2214-2223. https://doi.org/10.2337/db16-0278.
  7. Nguyen TH, Yang JW, Mahone M, Godbout A. Are there benefits for gestational diabetes mellitus in treating lower levels of hyperglycemia than standard recommendations? Can J Diabetes. 2016;40(6):548-554. https://doi.org/10.1016/j.jcjd.2016.05.009.
  8. American Diabetes Association. Management of diabetes in pregnancy: Standards of medical care in Diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S137-S143. https://doi.org/10.2337/dc18-S013.
  9. Wong VW, Jalaludin B. Gestational diabetes mellitus: Who requires insulin therapy? Aust N Z J Obstet Gynaecol. 2011;51(5):432-436. https://doi.org/10.1111/j.1479-828X.2011.01329.x.
  10. Vajro P, Paolella G, Fasano A. Microbiota and gut-liver axis: Their influences on obesity and obesity-related liver disease. J Pediatr Gastroenterol Nutr. 2013;56(5):461-468. https://doi.org/10.1097/MPG.0b013e318284abb5.
  11. Ситкин С.И., Вахитов ТЯ, Демьянова ЕВ. Микробиом, дисбиоз толстой кишки и воспалительные заболевания кишечника: когда функция важнее таксономии // Альманах клинической медицины. – 2018. – Т. 46. – № 5. – С. 396−425. [Sitkin SI, Vakhitov TYa, Demyanova EV. Microbiome, gut dysbiosis and infammatory bowel disease: That moment when the function is more important than taxonomy. Almanac of clinical medicine. 2018;46(5):396-425. (In Russ.)]. https://doi.org/10.18786/2072-0505-2018-46-5-396-425.
  12. Scheithauer TP, Dallinga-Thie GM, de Vos WM, et al. Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Mol Metab. 2016;5(9):759-770. https://doi.org/10.1016/j.molmet.2016.06.002.
  13. Nastasi C, Candela M, Bonefeld CM, et al. The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci Rep. 2015;5:16148. https://doi.org/10.1038/srep16148.
  14. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015;11(10):577-591. https://doi.org/10.1038/nrendo.2015.128.
  15. Clarke G, Stilling RM, Kennedy PJ, et al. Minireview: Gut microbiota: The neglected endocrine organ. Mol Endocrinol. 2014;28(8):1221-1238. https://doi.org/10.1210/me.2014-1108.
  16. Metzler-Zebeli BU, Newman MA, Ladinig A, et al. Transglycosylated starch accelerated intestinal transit and enhanced bacterial fermentation in the large intestine using a pig model. Br J Nutr. 2019;122(1):1-13. https://doi.org/10.1017/S0007114519000849.
  17. Meijnikman AS, Gerdes VE, Nieuwdorp M, Herrema H. Evaluating causality of gut microbiota in obesity and diabetes in humans. Endocr Rev. 2018;39(2):133-153. https://doi.org/10.1210/er.2017-00192.
  18. Sircana A, Framarin L, Leone N, et al. Altered gut microbiota in Type 2 diabetes: Just a coincidence? Curr Diab Rep. 2018;18(10):98. https://doi.org/10.1007/s11892-018-1057-6.
  19. Chriett S, Zerzaihi O, Vidal H, et al. The histone deacetylase inhibitor sodium butyrate improves insulin signalling in palmitate-induced insulin resistance in L6 rat muscle cells through epigenetically-mediated up-regulation of Irs1. Mol Cell Endocrinol. 2017;439:224-232. https://doi.org/10.1016/j.mce.2016.09.006.
  20. Khan S, Jena G. The role of butyrate, a histone deacetylase inhibitor in diabetes mellitus: Experimental evidence for therapeutic intervention. Epigenomics. 2015;7(4):669-680. https://doi.org/10.2217/epi.15.20.
  21. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55-60. https://doi.org/10.1038/nature11450.
  22. Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110(22):9066-9071. https://doi.org/10.1073/pnas. 1219451110.
  23. Tilg H, Moschen AR. Microbiota and diabetes: An evolving relationship. Gut. 2014;63(9):1513-1521. https://doi.org/10.1136/gutjnl-2014-306928.
  24. Caricilli AM, Saad MJ. The role of gut microbiota on insulin resistance. Nutrients. 2013;5(3):829-851. https://doi.org/10.3390/nu5030829.
  25. Романцова Т.И., Дедов И.И., Кузнецов И.С. Эндоканнабиноидная система: структура и потенциальные возможности в регуляции массы тела // Ожирение и метаболизм. – 2006. – Т. 3. – № 4. – C. 2−11. [Romantsova TI, Dedov II, Kuznetsov IS. Endokannabinoidnaya sistema: struktura i potentsial’nye vozmozhnosti v regulyatsii massy tela. Obesity and metabolism. 2006;3(4):2-11. (In Russ.)]. https://doi.org/10.14341/2071-8713-5138.
  26. Gregor MF, Hotamistigli GS. Inflammatory mechanisms in obesity. Ann Rev Immunol. 2011;29:415-445. https://doi.org/10.1146/annurev-immunol-031210-101322.
  27. Dali-Youcef N, Mecili M, Ricci R, et al. Metabolic inflammation: Connecting obesity and insulin resistance. Ann Med. 2013;45(3):242-253. https://doi.org/10.3109/07853890.2012.705015.
  28. Williamson RT, Lond MD. On treatment of glycosia and diabetes mellitus with sodium salicylate. Brit Med J. 1901;1(2100):760-762. https://doi.org/10.1136/bmj.1.2100.760.
  29. Van de Wouw M, Schellekens H, Dinan TG, Cryan JF. Microbiota-Gut-Brain Axis: Modulator of host metabolism and appetite. J Nutr. 2017;147(5):727-745. https://doi.org/10.3945/jn.116.240481.
  30. Ding S, Chi MM, Scull BP, et al. High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One. 2010;5(8):e12191. https://doi.org/10.1371/journal.pone.0012191.
  31. Ghoshal S, Witta J, Zhong J, et al. Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res. 2009;50(1):90-97. https://doi.org/10.1194/jlr.M800156-JLR200.
  32. Wen L, Duffy A. Factors influencing the gut microbiota, inflammation, and Type 2 diabetes. J Nutr. 2017;147(7):1468S-1475S. https://doi.org/10.3945/jn.116.240754.
  33. Crusell M, Hansen TH, Nielsen T, et al. Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum. Microbiome. 2018;6(1):89. https://doi.org/10.1186/s40168-018-0472-x.
  34. Ma S, You Y, Huang L, et al. Alterations in gut microbiota of gestational diabetes patients during the first trimester of pregnancy. Front Cell Infect Microbiol. 2020;10:58. https://doi.org/10.3389/fcimb.2020.00058.
  35. Gohir W, Whelan FJ, Surette MG, et al. Pregnancy-related changes in the maternal gut microbiota are dependent upon the mother’s periconceptional diet. Gut Microbes. 2015;6(5):310-320. https://doi.org/10.1080/19490976. 2015.1086056.
  36. Collado MC, Isolauri E, Laitinen K, Salminen S. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr. 2008;88(4):894-899. https://doi.org/10.1093/ajcn/88.4.894.
  37. Santacruz A, Collado MC, García-Valdés L, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr. 2010;104(1):83-92. https://doi.org/10.1017/S0007114510000176.
  38. Stanislavski MA, Dabelea D, Wagner BD, et al. Pre-pregnancy weight, gestational weight gain, and the gut microbiota of mothers and their infants. Microbiome. 2017;5(1):113. https://doi.org/10.1186/s40168-017-0332-0.
  39. Wang J, Zheng JM, Shi W, et al. Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus. Gut. 2018;67(9):1614-1625. https://doi.org/10.1136/gutjnl-2018-315988.
  40. Ferrocino I, Ponzo V, Gambino R, et al. Changes in the gut microbiota composition during pregnancy in patients with gestational diabetes mellitus (GDM). Sci Rep. 2018;8(1):12216. https://doi.org/10.1038/s41598-018-30735-9.
  41. DiGiulio DB, Callahan BJ, McMurdie PJ, et al. Temporal and spatial variation of the human microbiota during pregnancy. Proc Natl Acad Sci U S A. 2015;112(35):11060-11065. https://doi.org/10.1073/pnas.1502875112.
  42. Ye G, Zhang L, Wang M, et al. The gut microbiota in women suffering from gestational diabetes mellitus with the failure of glycemic control by lifestyle modification. J Diabetes Res. 2019;2019:6081248. https://doi.org/10.1155/2019/6081248.
  43. Kameyama K, Itoh K. Intestinal colonization by a Lachnospiraceae bacterium contributes to the development of diabetes in obese mice. Microbes Environ. 2014;29(4):427-430. https://doi.org/10.1264/jsme2.me14054.
  44. Obeid R, Awwad HM, Rabagny Y, et al. Plasma trimethylamine N-oxide concentration is associated with choline, phospholipids, and methyl metabolism. Am J Clin Nutr. 2016;103(3):703-711. https://doi.org/10.3945/ajcn.115. 121269.
  45. Dambrova M, Latkovskis G, Kuka J, et al. Diabetes is associated with higher trimethylamine N-oxide plasma levels. Exp Clin Endocrinol Diabetes. 2016;124(4):251-256. https://doi.org/10.1055/s-0035-1569330.
  46. Li P, Zhong C, Li S, et al. Plasma concentration of trimethylamine-N-oxide and risk of gestational diabetes mellitus. Am J Clin Nutr. 2018;108(3):603-610. https://doi.org/10.1093/ajcn/nqy116.
  47. Huo X, Li J, Cao YF, et al. Trimethylamine N-Oxide metabolites in early pregnancy and risk of gestational diabetes: A nested case-control study. J Clin Endocrinol Metab. 2019;104(11):5529-5539. https://doi.org/10.1210/jc.2019-00710.
  48. Buchanan TA, Xiang AH, Page KA. Gestational diabetes mellitus: Risks and management during and after pregnancy. Nat Rev Endocrinol. 2012;8(11):639-649. https://doi.org/10.1038/nrendo.2012.96.
  49. Carr DB, Newton KM, Utzschneider KM, et al. Gestational diabetes or lesser degrees of glucose intolerance and risk of preeclampsia. Hypertens Pregnancy. 2011;30(2):153-163. https://doi.org/10.3109/10641950903115012.
  50. Lyte M. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: Microbial endocrinology in the design and use of probiotics. Bioessays. 2011;33(8):574-581. https://doi.org/10.1002/bies.201100024.
  51. El Aidy S, Dinan TG, Cryan JF. Immune modulation of the brain-gut-microbe axis. Front Microbiol. 2014;5:146. https://doi.org/10.3389/fmicb.2014.00146.
  52. Mell B, Jala VR, Mathew AV, et al. Evidence for a link between gut microbiota and hypertension in the Dahl rat. Physiol Genomics. 2015;47:187-197. https://doi.org/10.1152/physiolgenomics.00136.2014.
  53. Smith TJ, Piscatelli JJ, Andersen V, et al. n-Butyrate induces plasminogen activator inhibitor type 1 messenger RNA in cultured Hep G2 cells. Hepatology. 1996;23(4):866-871. https://doi.org/10.1002/hep.510230430.
  54. Liu J, Yang H, Yin Z, et al. Remodeling of the gut microbiota and structural shifts in preeclampsia patients in South China. Eur J Clin Microbiol Infect Dis. 2017;36(4):713-719. https://doi.org/10.1007/s10096-016-2853-z.
  55. Wang J, Gu X, Yang J, et al. Gut microbiota dysbiosis and increased plasma LPS and TMAO levels in patients with preeclampsia. Front Cell Infect Microbiol. 2019;9:409. https://doi.org/10.3389/fcimb.2019.00409.
  56. Dunn AB, Hanson L, Vande Vusse L, Leslie S. Through the microbial looking glass: premature labor, preeclampsia, and gestational diabetes: A scoping review. J Perinat Neonatal Nurs. 2019;33(1):35-51. https://doi.org/10.1097/JPN.0000000000000375.
  57. Chen X, Li P, Liu M, et al. Gut dysbiosis induces the development of pre-eclampsia through bacterial translocation. Gut. 2020;69(3):513-522. https://doi.org/10.1136/gutjnl-2019-319101.
  58. Lv LJ, Li SH, Li SC, et al. Early-Onset preeclampsia is associated with gut microbial alterations in antepartum and postpartum women. Front Cell Infect Microbiol. 2019;9:224. https://doi.org/10.3389/fcimb.2019. 00224.
  59. Singh RK, Chang HW, Yan D, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73. https://doi.org/10.1186/s12967-017-1175-y.
  60. Scott KP, Gratz SW, Sheridan PO, et al. The influence of diet on the gut microbiota. Pharmacol Res. 2013;69(1):52-60. https://doi.org/10.1016/j.phrs.2012.10.020.
  61. Hernandez TL, Anderson MA, Chartier-Logan C, et al. Strategies in the Nutritional Management of Gestational Diabetes. Clin Obstet Gynecol. 2013;56(4):803-815. https://doi.org/10.1097/GRF.0b013e3182a8e0e5.
  62. Korem T, Zeevi D, Zmora N, et al. Bread affects clinical parameters and induces gut microbiome-associated personal glycemic responses. Cell Metab. 2017;25:1243-1253. https://doi.org/10.1016/j.cmet.2017.05.002.
  63. Zeevi D, Korem T, Zmora N, et al. Personalized nutrition by prediction of glycemic responses. Cell. 2015;163(5):1079-1795. https://doi.org/10.1016/j.cell.2015.11.001.
  64. Bashiardes S, Godneva A, Elinav E, Segal E. Towards utilization of the human genome and microbiome for personalized nutrition. Curr Opin Biotechnol. 2018;51:57-63. https://doi.org/10.1016/j.copbio.2017.11.013.
  65. Zmora N, Zeevi D, Korem T, al. Taking it personally: Personalized utilization of the human microbiome in health and disease. Cell Host Microbe. 2016;19(1):12-20. https://doi.org/10.1016/j.chom.2015.12.016.
  66. Nitert MD, Barrett HL, Foxcroft K, et al. SPRING: An RCT study of probiotics in the prevention of gestational diabetes mellitus in overweight and obese women. BMC Pregnancy Childbirth. 2013;13:50. https://doi.org/10.1186/1471-2393-13-50.
  67. Brantsaeter AL, Myhre R, Haugen M, et al. Intake of probiotic food and risk of preeclampsia in primiparous women: The Norwegian Mother and Child Cohort Study. Am J Epidemiol. 2011;174(7):807-815. https://doi.org/10.1093/aje/kwr168.
  68. Lye HS, Kuan CY, Ewe JA, et al. The improvement of hypertension by probiotics: Effects on cholesterol, diabetes, renin, and phytoestrogens. Int J Mol Sci. 2009;10(9):3755-3775. https://doi.org/10.3390/ijms10093755.
  69. Homayouni A, Bagheri N, Mohammad-Alizadeh-Charandabi S, et al. Prevention of gestational diabetes mellitus (GDM) and probiotics: Mechanism of action: A review. Curr Diabetes Rev. 2020;16(6):538-545. https://doi.org/ 10.2174/1573399815666190712193828.

Copyright (c) 2020 Zinina T.A., Tiselko A.V., Yarmolinskaya M.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies