In vitro model of premature ovarian insufficiency based on cyclophosphamide-induced mitochondrial dysfunction in granulosa cells

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Currently, there is no unified approach or effective method for treating premature ovarian insufficiency. The primary strategy is hormone replacement therapy aimed at mitigating estrogen deficiency and its associated complications. However, this therapy does not restore lost ovarian function or fertility. Thus, further research into the pathogenesis of premature ovarian insufficiency is crucial for developing alternative pathogenetically based therapies. Investigating the efficacy of various drugs in preclinical trials using cellular models holds significant promise. Experimental modeling of premature ovarian insufficiency, which closely replicates the origin and development mechanism of the human disease, can be effectively used to develop promising therapeutic approaches, in particular, for testing new drugs.

AIM: The aim of this study was to develop a new method for experimental modeling of premature ovarian insufficiency using cyclophosphamide in Wistar rats, the significant advantages of which are high reproducibility, ease of implementation, and cost-effectiveness.

MATERIALS AND METHODS: A culture of Wistar rat ovarian granulosa cells after five stages of subculturing was treated with the drug cyclophosphamide, ensuring a working concentration in the growth medium of 0.1 mg/ml, followed by incubation for six hours.

RESULTS: A cellular model of premature ovarian insufficiency has been created, which is characterized by 100% modeling efficiency, high manufacturability and environmental safety for modeling the pathological condition.

CONCLUSIONS: The model created will allow for testing the medicinal effectiveness of chemicals with a view to their further use in medicine.

About the authors

Karina A. Zakuraeva

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Author for correspondence.
Email: zakuraevak@icloud.com
ORCID iD: 0000-0002-8128-306X
SPIN-code: 5215-7869

MD

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Maria I. Yarmolinskaya

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: m.yarmolinskaya@gmail.com
ORCID iD: 0000-0002-6551-4147
SPIN-code: 3686-3605

MD, Dr. Sci. (Medicine), Professor, Professor of the Russian Academy of Sciences

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Andrey Yu. Vinokurov

Orel State University named after I.S. Turgenev

Email: vinokurovayu@oreluniver.ru
ORCID iD: 0000-0001-8436-1353
SPIN-code: 5518-3107

Cand. Sci. (Engineering)

Russian Federation, Orel

Marina Yu. Pogonyalova

Orel State University named after I.S. Turgenev

Email: mpogonalova@gmail.com
ORCID iD: 0000-0001-6919-0728
SPIN-code: 1300-9791
Russian Federation, Orel

References

  1. Webber L, Davies M, Anderson R, et al. ESHRE Guideline: management of women with premature ovarian insufficiency. Hum Reprod. 2016;31(5):926–937. doi: 10.1093/HUMREP/DEW027
  2. Kalich-Philosoph L, Roness H, Carmely A, et al. Cyclophosphamide triggers follicle activation and “burnout”; AS101 prevents follicle loss and preserves fertility. Sci Transl Med. 2013;5(185). doi: 10.1126/SCITRANSLMED.3005402
  3. Yuksel A, Bildik G, Senbabaoglu F, et al. The magnitude of gonadotoxicity of chemotherapy drugs on ovarian follicles and granulosa cells varies depending upon the category of the drugs and the type of granulosa cells. Hum Reprod. 2015;30(12):2926–2935. doi: 10.1093/HUMREP/DEV256
  4. Helsby NA, Yong M, van Kan M, et al. The importance of both CYP2C19 and CYP2B6 germline variations in cyclophosphamide pharmacokinetics and clinical outcomes. Br J Clin Pharmacol. 2019;85(9):1925–1934. doi: 10.1111/BCP.14031
  5. Colvin OM. An overview of cyclophosphamide development and clinical applications. Curr Pharm Des. 1999;30(51). doi: 10.1002/CHIN.199951281
  6. Orrenius S, Gogvadze V, Zhivotovsky B. Mitochondrial oxidative stress: Implications for cell death. Annu Rev Pharmacol Toxicol. 2007;47:143–183. doi: 10.1146/ANNUREV.PHARMTOX.47.120505.105122
  7. Sinha K, Das J, Pal PB, Sil PC. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol. 2013;87(7):1157–1180. doi: 10.1007/S00204-013-1034-4
  8. Wang S, Zheng Y, Li J, et al. Single-cell transcriptomic atlas of primate ovarian aging. Obstet Gynecol Surv. 2020;75(5):295–296. doi: 10.1097/OGX.0000000000000804
  9. Franasiak JM, Forman EJ, Hong KH, et al. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil Steril. 2014;101(3). doi: 10.1016/J.FERTNSTERT.2013.11.004
  10. Vatlin A Danilenko B. Bacterial fof1 atp — nanomotor for atp synthesis and hydrolysis,mechanism of interaction with the macrolide antibiotic oligomycin A. Advances in modern biology. 2020;140(3):231–243. EDN: FIIDQY doi: 10.31857/S0042132420020076
  11. Tarasenko VI, Garnik EYu, Shmakov VN, et al. Influence of respiratory complex I dysfunctions on the reactive oxygen species level in arabidopsis cells. The Bulletin of Irkutsk State University. Series: Biology. Ecology. 2010;3(2):9–13. EDN: MVHFVN
  12. Ivanova VV, Starostina IG, Martynova EV, et al. Analysis of Bj fibroblasts mitochondrial respiratory chain function under glucose starvation and exposure to different doses of rotenone: implications for neurogenerative diseases. Genes & Cells. 2015;10(4):40–46. EDN: WCLIQZ
  13. Park KS, Jo I, Pak Y, et al. FCCP depolarizes plasma membrane potential by activating proton and Na+ currents in bovine aortic endothelial cells. Pflugers Arch. 2002;443(3):344–352. doi: 10.1007/S004240100703
  14. Kenwood BM, Weaver JL, Bajwa A, et al. Identification of a novel mitochondrial uncoupler that does not depolarize the plasma membrane. Mol Metab. 2013;3(2):114–123. doi: 10.1016/J.MOLMET.2013.11.005

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The isolated cell cultures are characterized by the presence of a calcium signal in response to stimulation with folliclestimulating hormone (FSH)

Download (80KB)
3. Fig. 2. Representative confocal images of ovarian granulosa cell culture loaded with tetramethylrhodamine methyl ester

Download (69KB)
4. Fig. 3. Statistical processing of tetramethylrhodamine methyl ester fluorescence data. FCCP — carbonyl cyanide p-trifluoro-methoxyphenyl hydrazone

Download (131KB)
5. Fig. 4. Experimental curves of the mitochondrial membrane potential maintenance mechanism evaluation in control cells and cells treated with cyclophosphamide. * р ≤ 0,05

Download (90KB)
6. Fig. 5. Effect of cyclophosphamide concentration (0.015–0.100 mg/ml) on the degree of mitochondrial depolarization in response to rotenone

Download (111KB)
7. Fig. 6. Experimental graphs of changes in the fluorescence intensity of tetramethylrhodamine methyl ester (TMRM) under the influence of oligomycin A, rotenone and carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) in control cells and cells treated with different concentrations of cyclophosphamide

Download (399KB)
8. Fig. 7. The effect of incubation time on the development of cyclophosphamide-associated (0.1 mg/ml) mitochondrial dysfunction. TMRM, tetramethylrhodamine methyl ester. * р ≤ 0,05

Download (103KB)
9. Fig. 8. Experimental graphs of changes in the fluorescence intensity of tetramethylrhodamine methyl ester (TMRM) under the influence of oligomycin A, rotenone and carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) in control cells and cells treated with cyclophosphamide for 2–8 h

Download (335KB)

Copyright (c) 2024 Eсо-Vector

License URL: https://eco-vector.com/for_authors.php#07

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».