Anatomical and physiological aspects of the mutual influence of circulatory hypoxia of the myometrium and non-progressive labour

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Non-progressive labour occurs in almost 10% of deliveries and is a main reason for unplanned cesarean sections and operative vaginal births using obstetric forceps or vacuum extraction. This article describes the morphological transformation of the myometrium and uterine blood vessels that occurs during pregnancy. It is shown that the myometrium inevitably experiences hypoxia at the microstructural level during each normal or pathological labour. We analyzed recent studies of the mutual influence of myometrial hypoxia and labour dystocia. Experimental and clinical studies showed relationship between the pH values and lactate levels determined in the myometrium on its contractility. Further research is justified, including the study of the pH and lactate values in amniotic fluid in patients with non-progressive labor. Finally, that will allow for clarifying the conditions and timing of labour stimulation with oxytocin and identifying a group of patients for whom oxytocin administration is contraindicated or hopeless.

About the authors

Dmitry S. Sudakov

North-Western State Medical University named after I.I. Mechnikov; The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Author for correspondence.
Email: suddakovv@yandex.ru
ORCID iD: 0000-0002-5270-0397
SPIN-code: 6189-8705

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg; Saint Petersburg

Igor P. Nikolaenkov

Leningrad Regional Perinatal Center

Email: nikolaenkov_igor@mail.ru
ORCID iD: 0000-0003-2780-0887
SPIN-code: 5571-4620

MD, Cand. Sci. (Medicine)

Russian Federation, Gatchina

Yulia R. Dymarskaya

North-Western State Medical University named after I.I. Mechnikov

Email: julia_dym@mail.ru
ORCID iD: 0000-0001-6027-6875
SPIN-code: 4195-3410

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Anna A. Kuznetsova

North-Western State Medical University named after I.I. Mechnikov

Email: anika8820@mail.ru
ORCID iD: 0000-0002-6901-9004
SPIN-code: 9077-0209
Russian Federation, Saint Petersburg

References

  1. Béranger R, Chantry AA. Oxytocin administration during spontaneous labor: Guidelines for clinical practice. Chapter 1: Definition and characteristics of normal and abnormal labor. J Gynecol Obstet Hum Reprod. 2017;46(6):469–478. doi: 10.1016/j.jogoh.2017.04.011
  2. Selin L, Wennerholm UB, Jonsson M, et al. High-dose versus low-dose of oxytocin for labour augmentation: a randomised controlled trial. Women Birth. 2019;32(4):356–363. doi: 10.1016/j.wombi.2018.09.002
  3. Operative vaginal birth: ACOG Practice Bulletin, N 219. Obstet Gynecol. 2020;135(4):e149–e159. doi: 10.1097/AOG.0000000000003764
  4. Hofmeyr GJ, Singata-Madliki M. The second stage of labor. Best Pract Res Clin Obstet Gynaecol. 2020;67:53–64. doi: 10.1016/j.bpobgyn.2020.03.012
  5. Spong CY, Berghella V, Wenstrom KD, et al. Preventing the first cesarean delivery: summary of a joint Eunice Kennedy Shriver National Institute of Child Health and Human Development, Society for Maternal-Fetal Medicine, and American College of Obstetricians and Gynecologists Workshop. Obstet Gynecol. 2012;120(5):1181–1193. doi: 10.1097/aog.0b013e3182704880
  6. Savitskiy AG, Savitskiy GA. biomechanics of physiological labor contractions (myometral-hemodynamic concept) scientific review. Medical sciences. 2021;(6):41–53. EDN: DESNAO doi: 10.17513/srms.1216
  7. Romero R. A profile of Emanuel A. Friedman, MD, DMedSci. Am J Obstet Gynecol. 2016;215(4):413–414. doi: 10.1016/j.ajog.2016.07.034
  8. Friedman E. The graphic analysis of labor. Am J Obstet Gynecol. 1954;68(6):1568–1575. doi: 10.1016/0002-9378(54)90311-7
  9. Friedman EA. Primigravid labor; a graphicostatistical analysis. Obstet Gynecol. 1955;6(6):567–589. doi: 10.1097/00006250-195512000-00001
  10. Bezhenar VF, Novikov BN, Turlak AS. Professor Ilya Yakovlev (on the 120th anniversary). The Scientific Notes of IPP SPSMU. 2017;24(1):9–14. (In Russ.) EDN: YRMTJN doi: 10.24884/1607-4181-2017-24-1-9-14
  11. Yakovlev II. On the structure and physiology of the smooth muscles of the pregnant uterus. Obstetrics and Gynecology. 1965;(2):3–9. (In Russ.)
  12. Yakovlev II. Basic provisions on the function of the “giving birth” uterus. Obstetrics and gynecology. 1963;(5):3–8. (In Russ.)
  13. Savitskiy AG, Savitskiy GA. “Discoordination labors activity” — longstanding parascietific myth or obstetric reality? Children’s Medicine of the North-West. 2011;2(1):6–15. EDN: OZNJSF
  14. Zhelezova ME, Zephirova TP, Yagovkina NE, et al. The influence of duration of labor on perinatal outcomes. Practical medicine. 2017;(7):12–17. EDN: ZFCWWD
  15. Pachuliia OV, Khalenko VV, Shengeliia MO, et al. Biomechanisms of cervical remodeling and current approaches to maturity assessment. Journal of Obstetrics and Women’s diseases. 2023;72(1):81–95. EDN: SZDEIG doi: 10.17816/JOWD114934
  16. Young RC, Hession RO. Three-dimensional structure of the smooth muscle in the term-pregnant human uterus. Obstet Gynecol. 1999;93(1):94–99. doi: 10.1016/s0029-7844(98)00345-7
  17. Gilroy A, MacPherson B, Ross L, et al. Atlas of anatomy. Stuttgart: Thieme; 2012. 656 p.
  18. Krstic RV; Samusev RP, editor. Atlas of microscopic human anatomy: a textbook for higher education students. Moscow: World and Education; 2010. 608 p. EDN: QKSODN
  19. Young RC. Myocytes, myometrium, and uterine contractions. Ann NY Acad Sci. 2007;1101:72–84. doi: 10.1196/annals.1389.038
  20. Weiss S, Jaermann T, Schmid P, et al. Three-dimensional fiber architecture of the nonpregnant human uterus determined ex vivo using magnetic resonance diffusion tensor imaging. Anat Rec A Discov Mol Cell Evol Biol. 2006;288(1):84–90. doi: 10.1002/ar.a.20274
  21. Tetlow RL, Richmond I, Manton DJ, et al. Histological analysis of the uterine junctional zone as seen by transvaginal ultrasound. Ultrasound Obstet Gynecol. 1999;14(3):188–193. doi: 10.1046/j.1469-0705.1999.14030188.x
  22. Benagiano G, Brosens I. Adenomyosis and endometriosis have a common origin. J Obstet Gynaecol India. 2011;61(2):146–152. doi: 10.1007/s13224-011-0030-y
  23. Mogilnaja GM, Simovonik AN. The junctional zone of the uterus and its predictors in the diagnosis of adenomyosis. Crimea Journal of Experimental and Clinical Medicine. 2018;8(1):55–60. EDN: UUXGVK
  24. Mogilnaya GM, Kutsenko II, Simovonik AN. The junctional zone of the uterus and adenomyosis. Journal of Anatomy and Histopathology. 2018;7(1):108–117. EDN: YTTOWW doi: 10.18499/2225-7357-2018-7-1-108-117
  25. Brosens I, Derwig I, Brosens J, et al. The enigmatic uterine junctional zone: the missing link between reproductive disorders and major obstetrical disorders? Hum Reprod. 2010;25(3):569–574. doi: 10.1093/humrep/dep474
  26. Aguilar HN, Mitchell BF. Physiological pathways and molecular mechanisms regulating uterine contractility. Hum Reprod Update. 2010;16(6):725–744. doi: 10.1093/humupd/dmq016
  27. Wray S, Prendergast C. The myometrium: from excitation to contractions and labour. Adv Exp Med Biol. 2019;1124:233–263. doi: 10.1007/978-981-13-5895-1_10
  28. Farrer-Brown G, Beilby JO, Tarbit MH. The blood supply of the uterus. 1. Arterial vasculature. J Obstet Gynaecol Br Commonw. 1970;77(8):673–681. doi: 10.1111/j.1471-0528.1970.tb03592.x
  29. Farrer-Brown G, Beilby JO, Tarbit MH. The blood supply of the uterus. 2. Venous pattern. J Obstet Gynaecol Br Commonw. 1970;77(8):682–689. doi: 10.1111/j.1471-0528.1970.tb03593.x
  30. Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Am J Obstet Gynecol. 1975;122(2):262–263. doi: 10.1016/s0002-9378(16)33500-1
  31. Tolibova GX, Tral TG, Kogan IYu, et al. Endometrium. Atlas. Moscow: Status Praesens 2022. EDN: GMDUEO
  32. Tolibova GX, Tral TG, Kogan IYu, et al. Endometrium. Atlas. Moscow: Status Praesens, 2023. 248 p. (In Russ.) EDN: NPIEWV doi: 10.29039/978-5-907217-78-9
  33. Pijnenborg R, Vercruysse L, Hanssens M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta. 2006;27(9–10):939–958. doi: 10.1016/j.placenta.2005.12.006
  34. Osol G, Moore LG. Maternal uterine vascular remodeling during pregnancy. Microcirculation. 2014;21(1):38–47. doi: 10.1111/micc.12080
  35. Soares MJ, Chakraborty D, Kubota K, et al. Adaptive mechanisms controlling uterine spiral artery remodeling during the establishment of pregnancy. Int J Dev Biol. 2014;58(2–4):247–259. doi: 10.1387/ijdb.140083ms
  36. Burton GJ, Woods AW, Jauniaux E, et al. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta. 2009;30(6):473–482. doi: 10.1016/j.placenta.2009.02.009
  37. Jaggar JH, Wellman GC, Heppner TJ, et al. Ca2+ channels, ryanodine receptors and Ca(2+)-activated K+ channels: a functional unit for regulating arterial tone. Acta Physiol Scand. 1998;164(4):577–587. doi: 10.1046/j.1365-201X.1998.00462.x
  38. Rosenfeld CR, Roy T, DeSpain K, et al. Large-conductance Ca2+-dependent K+ channels regulate basal uteroplacental blood flow in ovine pregnancy. J Soc Gynecol Investig. 2005;12(6):402–408. doi: 10.1016/j.jsgi.2005.04.009
  39. Hu XQ, Song R, Romero M, et al. Pregnancy increases Ca2+ sparks/spontaneous transient outward currents and reduces uterine arterial myogenic tone. Hypertension. 2019;73(3):691–702. doi: 10.1161/HYPERTENSIONAHA.118.12484
  40. Galley HF, Webster NR. Physiology of the endothelium. Br J Anaesth. 2004;93(1):105–113. doi: 10.1093/bja/aeh163
  41. Wray S, Alruwaili M, Prendergast C. Hypoxia and reproductive health: hypoxia and labour. Reproduction. 2021;161(1):F67–F80. doi: 10.1530/REP-20-0327
  42. Jenkins HN, Rivera-Gonzalez O, Gibert Y, et al. Endothelin-1 in the pathophysiology of obesity and insulin resistance. Obes Rev. 2020;21(12):e13086. doi: 10.1111/obr.13086
  43. Vanhoutte PM, Tang EH. Endothelium-dependent contractions: when a good guy turns bad! J Physiol. 2008;586(22):5295–5304. doi: 10.1113/jphysiol.2008.161430
  44. Faber-Swensson AP, O’Callaghan SP, Walters WA. Endothelial cell function enhancement in a late normal human pregnancy. Aust N Z J Obstet Gynaecol. 2004;44(6):525–529. doi: 10.1111/j.1479-828X.2004.00302.x
  45. Titov VN. Anatomical and functional basis of endothelium-dependent vasodilation, nitric oxide and endothelin. Russian Journal of Cardiology. 2008;(1):71–85. (In Russ.) EDN: IJVIIF
  46. Nelson SH, Steinsland OS, Wang Y, et al. Increased nitric oxide synthase activity and expression in the human uterine artery during pregnancy. Circ Res. 2000;87(5):406–411. doi: 10.1161/01.res.87.5.406
  47. Vanhoutte PM, Shimokawa H, Feletou M, et al. Endothelial dysfunction and vascular disease – a 30th anniversary update. Acta Physiol (Oxf). 2017;219(1):22–96. doi: 10.1111/apha.12646
  48. Davies SC, Machin SJ. Prostacyclin (PGI2). Intensive Care Med. 1983; 9(2):49–52. doi: 10.1007/BF01699256
  49. Luksha L, Agewall S, Kublickiene K. Endothelium-derived hyperpolarizing factor in vascular physiology and cardiovascular disease. Atherosclerosis. 2009; 202(2):330–344. doi: 10.1016/j.atherosclerosis.2008.06.008
  50. Mustafa AK, Sikka G, Gazi SK, et al. Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res. 2011;109(11):1259–1268. doi: 10.1161/CIRCRESAHA.111.240242
  51. Prendergast C. Maternal phenotype: how does age, obesity and diabetes affect myometrial function? Curr Opin Physiol. 2020;13:108–116. doi: 10.1016/j.cophys.2019.10.016
  52. Ailamazyan EK, Kuzminykh TU. Evolution of views on operative delivery. Journal of Obstetrics and Women’s Diseases. 2022;71(6):97–105. EDN: EPUCIM doi: 10.17816/JOWD119829
  53. Al-Qahtani S, Heath A, Quenby S, et al. Diabetes is associated with impairment of uterine contractility and high Caesarean section rate. Diabetologia. 2012;55(2):489–498. doi: 10.1007/s00125-011-2371-6
  54. Chirayath HH, Wareing M, Taggart MJ, et al. Endothelial dysfunction in myometrial arteries of women with gestational diabetes. Diabetes Res Clin Pract. 2010;89(2):134–140. doi: 10.1016/j.diabres.2010.03.022
  55. Kapustin RV, Arzhanova ON, Sokolov DI, et al. Estimation of the plasma concentration of endothelin-1 and sicam-1 in pregnant women with gestational diabetes mellitus. Obstetrics and Gynecology. 2013;(5):36–41. EDN: QLHTBZ
  56. Hayward CE, Cowley EJ, Mills TA, et al. Maternal obesity impairs specific regulatory pathways in human myometrial arteries. Biol Reprod. 2014;90(3):65. doi: 10.1095/biolreprod.113.112623
  57. Prendergast C, Wray S. Human myometrial artery function and endothelial cell calcium signalling are reduced by obesity: can this contribute to poor labour outcomes? Acta Physiol (Oxf). 2019;227(4):e13341. doi: 10.1111/apha.13341
  58. Seryogina DS, Nikolayenkov IP, Kuzminykh TU. Obesity represents a strong pathogenetic link with the pathology of pregnancy and childbirth. Journal of Obstetrics and Women’s Diseases. 2020;69(2):73–82. EDN: LRLYCV doi: 10.17816/JOWD69273-82
  59. Acromite MT, Mantzoros CS, Leach RE, et al. Androgens in preeclampsia. Am J Obstet Gynecol. 1999;180(1):60–63. doi: 10.1016/s0002-9378(99)70150-x
  60. Pepene CE. Evidence for visfatin as an independent predictor of endothelial dysfunction in polycystic ovary syndrome. Clin Endocrinol (Oxf). 2012;76(1):119–125. doi: 10.1111/j.1365-2265.2011.04171.x
  61. Nikolayenkov IP, Kuzminykh TU, Tarasova MA, et al. Features of the course of pregnancy in women with polycystic ovary syndrome. Journal of Obstetrics and Women’s Diseases. 2020;69(5):105–112. EDN: HNEEAT doi: 10.17816/JOWD695105-112
  62. Lavrova OV, Shapovalova EA, Dymarskaya YR, et al. Operative delivery in pregnant women with asthma. Journal of Obstetrics and Women’s Diseases. 2019;68(4):19–26. EDN: PHGBRI doi: 10.17816/JOWD68419-26
  63. Andersen MR, Uldbjerg N, Stender S, et al. Maternal smoking and impaired endothelium-dependent nitric oxide-mediated relaxation of uterine small arteries in vitro. Am J Obstet Gynecol. 2011;204(2):177.e1–177.e1777. doi: 10.1016/j.ajog.2010.09.006
  64. Hu XQ, Xiao D, Zhu R, et al. Chronic hypoxia suppresses pregnancy-induced upregulation of large-conductance Ca2+-activated K+ channel activity in uterine arteries. Hypertension. 2012;60(1):214–222. doi: 10.1161/HYPERTENSIONAHA.112.196097
  65. Xiao D, Hu XQ, Huang X, et al. Chronic hypoxia during gestation enhances uterine arterial myogenic tone via heightened oxidative stress. PLoS One. 2013;8(9). doi: 10.1371/journal.pone.0073731
  66. Lye SJ, Ou C-W, Teoh T-G, et al. The molecular basis of labour and tocolysis. Fetal and Maternal Medicine Review. 1998;10(3):121–136. doi: 10.1017/S096553959800031X
  67. Beyer EC, Kistler J, Paul DL, et al. Antisera directed against connexin43 peptides react with a 43-kD protein localized to gap junctions in myocardium and other tissues. J Cell Biol. 1989;108(2):595–605. doi: 10.1083/jcb.108.2.595
  68. Hutchings G, Gevaert T, Deprest J, et al. Immunohistochemistry using an antibody to unphosphorylated connexin 43 to identify human myometrial interstitial cells. Reprod Biol Endocrinol. 2008;6:43. doi: 10.1186/1477-7827-6-43
  69. Ermoshenko BG, Dorofeeva IV, Shubich MG. Structural and functional bases of coordination of contractile activity of the myometrium during childbirth (conducting system of the uterus). Russian Bulletin of Obstetrician-Gynecologist. (In Russ.) 2003;3(5):21–27. EDN: ZCAJFX
  70. Garfield RE, Sims S, Daniel EE. Gap junctions: their presence and necessity in myometrium during parturition. Science. 1977;198(4320):958–960. doi: 10.1126/science.929182
  71. Risek B, Guthrie S, Kumar N, et al. Modulation of gap junction transcript and protein expression during pregnancy in the rat. J Cell Biol. 1990;110(2):269–282. doi: 10.1083/jcb.110.2.269
  72. Meyer RA, Laird DW, Revel JP, et al. Inhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies. J Cell Biol. 1992;119(1):179–189. doi: 10.1083/jcb.119.1.179
  73. Konovalov PV, Gorshkov AN, Ovsyannikov FA, et al. Remodeling of the myometrium with connective tissue dysplasia in women with uterine inertia. Translational medicine. 2015;(6):39–46. (In Russ.) EDN: VWHUHH
  74. Savitskiy AG, Savitskiy GA. Biomechanics of physiological labor contractions (the dominant version of the teaching). Medical sciences. 2021;(3):62–68. EDN: PDYJZE doi: 10.17513/srms.1192
  75. Lutton EJ, Lammers WJEP, James S, et al. Identification of uterine pacemaker regions at the myometrial-placental interface in the rat. J Physiol. 2018;596(14):2841–2852. doi: 10.1113/JP275688
  76. Shmigol AV, Eisner DA, Wray S. Properties of voltage-activated [Ca2+]i transients in single smooth muscle cells isolated from pregnant rat uterus. J Physiol. 1998;511(Pt 3):803–811. doi: 10.1111/j.1469-7793.1998.803bg.x
  77. Mitchell JA, Lye SJ. Regulation of connexin43 expression by c-fos and c-jun in myometrial cells. Cell Commun Adhes. 2001;8(4–6):299–302. doi: 10.3109/15419060109080741
  78. Chwalisz K, Garfield RE. Regulation of the uterus and cervix during pregnancy and labor. Role of progesterone and nitric oxide. Ann NY Acad Sci. 1997;828:238–253. doi: 10.1111/j.1749-6632.1997.tb48545.x
  79. Challis JRG. Characteristics of parturition. In: Dugoff L, Louis J. Maternalfetal medicine: principles and practice. Philadelphia: Saunders Co.; 1998. P. 484–497.
  80. Kuzminykh TU, Borisova VY, Nikolayenkov IP, et al. Role of biologically active molecules in uterine contractile activity. Journal of Obstetrics and Women’s Diseases. 2019;68(1):21–27. EDN: ZABXXV doi: 10.17816/JOWD68121-27
  81. Larcombe-McDouall J, Buttell N, Harrison N, et al. In vivo pH and metabolite changes during a single contraction in rat uterine smooth muscle. J Physiol. 1999;518 (Pt 3):783–790. doi: 10.1111/j.1469-7793.1999.0783p.x
  82. Jones NW, Raine-Fenning NJ, Jayaprakasan K, et al. Changes in myometrial ‘perfusion’ during normal labor as visualized by three-dimensional power Doppler angiography. Ultrasound Obstet Gynecol. 2009;33(3):307–312. doi: 10.1002/uog.6303
  83. Sato M, Noguchi J, Mashima M, et al. 3D power Doppler ultrasound assessment of placental perfusion during uterine contraction in labor. Placenta. 2016;45:32–36. doi: 10.1016/j.placenta.2016.06.018
  84. Alotaibi M, Arrowsmith S, Wray S. Hypoxia-induced force increase (HIFI) is a novel mechanism underlying the strengthening of labor contractions, produced by hypoxic stresses. Proc Natl Acad Sci USA. 2015;112(31):9763–9768. doi: 10.1073/pnas.1503497112
  85. Duprat F, Lesage F, Fink M, et al. TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J. 1997;16(17):5464–5471. doi: 10.1093/emboj/16.17.5464
  86. Shvetsova AA, Gaynullina DK, Tarasova OS. TASK-1 channels: functional role in arterial smooth muscle cells. Bulletin of Moscow University. Series 16. Biology. 2022;77(2):76–88. EDN: EHRSTY (In Russ.)
  87. Yuill K, Ashmole I, Stanfield PR. The selectivity filter of the tandem pore potassium channel TASK-1 and its pH-sensitivity and ionic selectivity. Pflugers Arch. 2004;448(1):63–69. doi: 10.1007/s00424-003-1218-5
  88. Morton MJ, O’Connell AD, Sivaprasadarao A, et al. Determinants of pH sensing in the two-pore domain K(+) channels TASK-1 and -2. Pflugers Arch. 2003;445(5):577–583. doi: 10.1007/s00424-002-0901-2
  89. Hong SJ, Kim BK, Shin DH, et al. Effect of intravascular ultrasound-guided vs angiography-guided everolimus-eluting stent implantation: the IVUS-XPL randomized clinical trial. JAMA. 2015;314(20):2155–2163. doi: 10.1001/jama.2015.15454
  90. Kyeong KS, Hong SH, Kim YC, et al. Myometrial relaxation of mice via expression of two pore domain acid sensitive K(+) (TASK-2) channels. Korean J Physiol Pharmacol. 2016;20(5):547–556. doi: 10.4196/kjpp.2016.20.5.547
  91. Jones K, Shmygol A, Kupittayanant S, et al. Electrophysiological characterization and functional importance of calcium-activated chloride channel in rat uterine myocytes. Pflugers Arch. 2004;448(1):36–43. doi: 10.1007/s00424-003-1224-7
  92. Monir-Bishty E, Pierce SJ, Kupittayanant S, et al. The effects of metabolic inhibition on intracellular calcium and contractility of human myometrium. BJOG. 2003;110(12):1050–1056.
  93. Bugg GJ, Riley MJ, Johnston TA, et al. Hypoxic inhibition of human myometrial contractions in vitro: implications for the regulation of parturition. Eur J Clin Invest. 2006;36(2):133–140. doi: 10.1111/j.1365-2362.2006.01600.x
  94. Badran M, Abuyassin B, Ayas N, et al. Intermittent hypoxia impairs uterine artery function in pregnant mice. J Physiol. 2019;597(10):2639–2650. doi: 10.1113/JP277775
  95. Gourdin MJ, Bree B, De Kock M. The impact of ischaemia-reperfusion on the blood vessel. Eur J Anaesthesiol. 2009;26(7):537–547. doi: 10.1097/EJA.0b013e328324b7c2
  96. Kirby LS, Kirby MA, Warren JW, et al. Increased innervation and ripening of the prepartum murine cervix. J Soc Gynecol Investig. 2005;12(8):578–585. doi: 10.1016/j.jsgi.2005.08.006
  97. Quenby S, Pierce SJ, Brigham S, et al. Dysfunctional labor and myometrial lactic acidosis. Obstet Gynecol. 2004;103(4):718–723. doi: 10.1097/01.AOG.0000118306.82556.43
  98. Wiberg-Itzel E, Pembe AB, Järnbert-Pettersson H, et al. Lactate in amniotic fluid: predictor of labor outcome in oxytocin-augmented primiparas’ deliveries. PLoS One. 2016;11(10):e0161546. doi: 10.1371/journal.pone.0161546
  99. Wiberg-Itzel E, Pembe AB, Wray S, et al. Level of lactate in amniotic fluid and its relation to the use of oxytocin and adverse neonatal outcome. Acta Obstet Gynecol Scand. 2014;93(1):80–85. doi: 10.1111/aogs.12261

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Photo portrait of Doctor of Medical Science, Professor Emeritus of Obstetrics, Gynecology, and Reproductive Biology at Harvard Medical School Emanuel A. Friedman

Download (60KB)
3. Fig. 2. Photo portrait Doctor of Medical Science, Professor, Head of the Department of Obstetrics and Gynecology of the First Leningrad Medical Institute Ilya I. Yakovlev

Download (60KB)
4. Fig. 3. Publication activity indicators on the problem of abnormal labour (according to the PubMed search engine)

Download (107KB)
5. Fig. 4. Microanatomy of the myometrium [16]

Download (208KB)
6. Fig. 5. Myometrium of the uterine fundus in full-term pregnancy [19]. A sample of the normal myometrium taken between leiomyoma nodes. Masson’s trichrome staining, zoom ×10. After fixation, the thickness of the myometrium from the serous membrane to the inner surface in this section was 22 mm

Download (232KB)

Copyright (c) 2024 Eсо-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».