Blood flow redistribution in the fetal umbilical-portal venous system in pregnancy complicated by diabetes mellitus

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: The fetal liver plays a central role in energy metabolism and is supplied mainly by the vessels of the umbilical-portal venous system. Redistribution of blood flow in this system is a key adaptive response of the fetus to environmental change.

AIM: The aim of this study was to evaluate the hemodynamic redistribution in the fetal umbilical-portal venous system in pregnant women with pregestational diabetes mellitus, gestational diabetes mellitus and in healthy pregnant women.

MATERIALS AND METHODS: This prospective cohort single-center study was conducted at the Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott, Saint Petersburg between February 2022 and September 2023. The study included 188 patients who made up the following comparison groups: pregestational diabetes mellitus (n = 86), gestational diabetes mellitus (n = 44), and control (n = 58). Patients underwent ultrasound from 30+0 to 41+3 weeks with assessment of venous hemodynamics in the vessels of the umbilical-portal venous system such as the umbilical vein, left portal vein, right portal vein, main portal vein, and ductus venosus.

RESULTS: The umbilical vein volumetric blood flow in the I group exceeded that in the II group by 23.60 ml/min/kg and that in the control group by 30.35 ml/min/kg (p < 0.001). The total liver volumetric blood flow in patients with pregestational diabetes mellitus (106.85 ml/min/kg) also exceeded that in the gestational diabetes mellitus group by 28.04 ml/min/kg and that in the control group by 33.73 ml/min/kg (p < 0.001). The umbilical vein and total fetal liver blood flows increased to full-term pregnancy, but, when normalized by the estimated fetal weight, the both flows showed a downward trend at 37–41 weeks of gestation (p < 0.001). No significant differences were revealed in the ductus venosus volumetric blood flow in the study groups. However, there was a significant decrease in the ductus venosus shunt fraction in patients with pregestational diabetes mellitus (16.83 %) by −8.34 % compared to the control group (24.56 %) and by −5.65 % compared to the II group (22.89 %). The downward trend persisted throughout the third trimester of pregnancy and reached its maximum at full-term (p < 0.001).

CONCLUSIONS: With pregestational diabetes mellitus, there is a priority redistribution of highly oxygenated blood from the umbilical vein to the right lobe of the fetal liver, accompanied by a decrease in the ductus venosus shunt fraction. This may underlie the pathogenesis of such complications as fetal macrosomia and diabetic fetopathy.

About the authors

Ekaterina V. Kopteeva

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: ekaterina_kopteeva@bk.ru
ORCID iD: 0000-0002-9328-8909
SPIN-code: 9421-6407

MD

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Elizaveta V. Shelaeva

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: eshelaeva@yandex.ru
ORCID iD: 0000-0002-9608-467X
SPIN-code: 7440-0555

MD, Cand. Sci. (Med.)

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Elena N. Alekseenkova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: ealekseva@gmail.com
ORCID iD: 0000-0002-0642-7924
SPIN-code: 3976-2540

MD

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Roman V. Kapustin

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: kapustin.roman@gmail.com
ORCID iD: 0000-0002-2783-3032
SPIN-code: 7300-6260

MD, Dr. Sci. (Med.)

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Igor Yu. Kogan

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Author for correspondence.
Email: ikogan@mail.ru
ORCID iD: 0000-0002-7351-6900
SPIN-code: 6572-6450

MD, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

References

  1. Murphy HR, Howgate C, O’Keefe J, et al. Characteristics and outcomes of pregnant women with type 1 or type 2 diabetes: a 5-year national population-based cohort study. Lancet Diabetes Endocrinol. 2021;9(3):153–164. doi: 10.1016/S2213-8587(20)30406-X
  2. Eidem I, Vangen S, Hanssen KF, et al. Perinatal and infant mortality in term and preterm births among women with type 1 diabetes. Diabetologia. 2011;54(11):2771–2778. doi: 10.1007/s00125-011-2281-7
  3. Persson M, Norman M, Hanson U. Obstetric and perinatal outcomes in type 1 diabetic pregnancies: a large, population-based study. Diabetes Care. 2009;32(11):2005–2009. doi: 10.2337/DC09-0656
  4. Evers I, De Valk H, Mol B, et al. Macrosomia despite good glycaemic control in Type I diabetic pregnancy; results of a nationwide study in the Netherlands. Diabetologia. 2002;45(11):1484–1489. doi: 10.1007/S00125-002-0958-7
  5. Feig DS, Donovan LE, Corcoy R, et al. Continuous glucose monitoring in pregnant women with type 1 diabetes (CONCEPTT): a multicentre international randomised controlled trial. Lancet. 2017;390(10110):2347–2359. doi: 10.1016/S0140-6736(17)32400-5
  6. Godfrey KM, Haugen G, Kiserud T, et al. Fetal liver blood flow distribution: role in human developmental strategy to prioritize fat deposition versus brain development. PLoS One. 2012;7(8). doi: 10.1371/journal.pone.0041759
  7. Kessler J, Rasmussen S, Godfrey K, et al. Longitudinal study of umbilical and portal venous blood flow to the fetal liver: low pregnancy weight gain is associated with preferential supply to the fetal left liver lobe. Pediatr Res. 2008;63(3):315–320. doi: 10.1203/PDR.0B013E318163A1DE
  8. Tchirikov M, Kertschanska S, Stürenberg HJ, et al. Liver blood perfusion as a possible instrument for fetal growth regulation. Placenta. 2002;23(Suppl A):S153–S158. doi: 10.1053/plac.2002.0810
  9. Yagel S, Kivilevitch Z, Cohen SM, et al. The fetal venous system, part I: normal embryology, anatomy, hemodynamics, ultrasound evaluation and Doppler investigation. Ultrasound Obstet Gynecol. 2010;35(6):741–750. doi: 10.1002/uog.7618
  10. Kiserud T, Kessler J, Ebbing C, et al. Ductus venosus shunting in growth-restricted fetuses and the effect of umbilical circulatory compromise. Ultrasound Obstet Gynecol. 2006;28(2):143–149. doi: 10.1002/UOG.2784
  11. Hsu CN, Hou CY, Hsu WH, et al. Early-life origins of metabolic syndrome: mechanisms and preventive aspects. Int J Mol Sci. 2021;22(21). doi: 10.3390/IJMS222111872
  12. Kuzawa CW. Fetal origins of developmental plasticity: are fetal cues reliable predictors of future nutritional environments? Am J Hum Biol. 2005;17(1):5–21. doi: 10.1002/AJHB.20091
  13. Ikenoue S, Waffarn F, Sumiyoshi K, et al. Maternal insulin resistance in pregnancy is associated with fetal fat deposition: findings from a longitudinal study. Am J Obstet Gynecol. 2023;228(4):455.e1–455.e8. doi: 10.1016/J.AJOG.2022.10.015
  14. Nicholas LM, Morrison JL, Rattanatray L, et al. The early origins of obesity and insulin resistance: timing, programming and mechanisms. Int J Obes. 2016;40(2):229–238. doi: 10.1038/IJO.2015.178
  15. Opheim GL, Moe Holme A, Blomhoff Holm M, et al. The impact of umbilical vein blood flow and glucose concentration on blood flow distribution to the fetal liver and systemic organs in healthy pregnancies. FASEB J. 2020;34(9):12481–12491. doi: 10.1096/FJ.202000766R
  16. Metzger BK. International Association of Diabetes and Pregnancy Study Groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care. 2010;33(3):676–682. doi: 10.2337/dc09-1848
  17. Dedov I, Shestakova M, Mayorov A, et al. Standards of specialized diabetes care. 11th Edition. Diabetes mellitus. 2023;26(2S):1–157. EDN: DCKLCI doi: 10.14341/DM13042
  18. Nicolaides KH, Wright D, Syngelaki A, et al. Fetal Medicine Foundation fetal and neonatal population weight charts. Ultrasound Obstet Gynecol. 2018;52(1):44–51. doi: 10.1002/UOG.19073
  19. Lund A, Ebbing C, Rasmussen S, et al. Altered development of fetal liver perfusion in pregnancies with pregestational diabetes. PLoS One. 2019;14(3). doi: 10.1371/journal.pone.0211788
  20. Kiserud T, Rasmussen S, Skulstad S. Blood flow and the degree of shunting through the ductus venosus in the human fetus. Am J Obstet Gynecol. 2000;182(1):147–153. doi: 10.1016/S0002-9378(00)70504-7
  21. Haugen G, Kiserud T, Godfrey K, et al. Portal and umbilical venous blood supply to the liver in the human fetus near term. Ultrasound Obstet Gynecol. 2004;24(6):599–605. doi: 10.1002/UOG.1744
  22. Kessler J, Rasmussen S, Kiserud T. The fetal portal vein: normal blood flow development during the second half of human pregnancy. Ultrasound Obstet Gynecol. 2007;30(1):52–60. doi: 10.1002/UOG.4054
  23. Kiserud T, Hellevik LR, Hanson MA. Blood velocity profile in the ductus venosus inlet expressed by the mean/maximum velocity ratio. Ultrasound Med Biol. 1998;24(9):1301–1306. doi: 10.1016/S0301-5629(98)00131-8
  24. Narkevich AN, Narkevich AA, Vinogradov KA. Interval evaluation of median and it’s automation. Medical doctor and information technologies. 2013;4:40–49. EDN: RBSKUD
  25. Lund A, Ebbing C, Rasmussen S, et al. Maternal diabetes alters the development of ductus venosus shunting in the fetus. Acta Obstet Gynecol Scand. 2018;97(8):1032–1040. doi: 10.1111/aogs.13363
  26. Kessler J, Rasmussen S, Godfrey K, et al. Venous liver blood flow and regulation of human fetal growth: evidence from macrosomic fetuses. Am J Obstet Gynecol. 2011;204(5):429.e1–429.e7. doi: 10.1016/J.AJOG.2010.12.038
  27. Olofsson P, Sjöberg NO, Lingman G, et al. Fetal blood flow in diabetic pregnancy. J Perinat Med. 1987;15(6):545–554. doi: 10.1515/JPME.1987.15.6.545
  28. Tchirikov M, Schroder HJ, Hecher K. Ductus venosus shunting in the fetal venous circulation: regulatory mechanisms, diagnostic methods and medical importance. Ultrasound Obstet Gynecol. 2006;27(4):452–461. doi: 10.1002/UOG.2747
  29. Boito SM, Struijk PC, Ursem NTC, et al. Assessment of fetal liver volume and umbilical venous volume flow in pregnancies complicated by insulin-dependent diabetes mellitus. BJOG. 2003;110(11):1007–1013. doi: 10.1111/j.1471-0528.2003.02533.x
  30. Cox LA, Schlabritz-Loutsevitch N, Hubbard GB, et al. Gene expression profile differences in left and right liver lobes from mid-gestation fetal baboons: a cautionary tale. J Physiol. 2006;572(Pt 1):59. doi: 10.1113/JPHYSIOL.2006.105726
  31. Ikenoue S, Waffarn F, Ohashi M, et al. Prospective association of fetal liver blood flow at 30 weeks gestation with newborn adiposity. Am J Obstet Gynecol. 2017;217(2):204.e1–204.e8. doi: 10.1016/J.AJOG.2017.04.022
  32. Shelayeva EV, Tsybuk EM, Kopteyeva EV, et al. Anatomical and pathophysiological features of fetal circulation in the umbilical-portal venous system. Journal of Obstetrics and Women’s Diseases. 2022;71(4):107–119. EDN: YUCYXA doi: 10.17816/JOWD106526
  33. Tchirikov M, Kertschanska S, Schröder HJ. Differential effects of catecholamines on vascular rings from ductus venosus and intrahepatic veins of fetal sheep. J Physiol. 2003;548(2):519. doi: 10.1113/JPHYSIOL.2002.034470
  34. Haugen G, Bollerslev J, Henriksen T. Human fetoplacental and fetal liver blood flow after maternal glucose loading: a cross-sectional observational study. Acta Obstet Gynecol Scand. 2014;93(8):778–785. doi: 10.1111/AOGS.12419
  35. Kessler J, Rasmussen S, Kiserud T. The left portal vein as an indicator of watershed in the fetal circulation: development during the second half of pregnancy and a suggested method of evaluation. Ultrasound Obstet Gynecol. 2007;30(5):757–764. doi: 10.1002/UOG.5146
  36. Ikenoue S, Waffarn F, Sumiyoshi K, et al. Association of ultrasound-based measures of fetal body composition with newborn adiposity. Pediatr Obes. 2017;12(Suppl 1):86–93. doi: 10.1111/IJPO.12198
  37. Boito S, Struijk PC, Ursem NTC, et al. Umbilical venous volume flow in the normally developing and growth-restricted human fetus. Ultrasound Obstet Gynecol. 2002;19(4):344–9. doi: 10.1046/J.1469-0705.2002.00671.X
  38. Bellotti M, Pennati G, De Gasperi C, et al. Simultaneous measurements of umbilical venous, fetal hepatic, and ductus venosus blood flow in growth-restricted human fetuses. Am J Obstet Gynecol. 2004;190(5):1347–1358. doi: 10.1016/j.ajog.2003.11.018
  39. Wender-Ozegowska E, Gutaj P, Mantaj U, et al. Pregnancy outcomes in women with long-duration type 1 diabetes — 25 years of experience. J Clin Med. 2020;9(10):3223. doi: 10.3390/JCM9103223
  40. Murphy HR, Steel SA, Roland JM, et al. Obstetric and perinatal outcomes in pregnancies complicated by type 1 and type 2 diabetes: influences of glycaemic control, obesity and social disadvantage. Diabet Med. 2011;28(9):1060. doi: 10.1111/J.1464-5491.2011.03333.X

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The schematic view of the fetal umbilical-portal venous system: a, cross section of the abdominal cavity of the fetus, arrows indicate physiological directions of blood flow in the fetal liver (adapted from [19]); b, visualization of the fetal umbilical-portal venous system in 3D HD-Flow mode. UV, umbilical vein; LPV, left portal vein; RPV, right portal vein; MPV, main portal vein; НПВ, inferior vena cava; DV, ductus venosus

Download (190KB)
3. Fig. 2. The main sections for visualizing the vessels of the fetal umbilical-portal venous system. a, oblique transverse section of the fetal abdomen, in which the entry of the umbilical vein into the liver, the ductus venosus, which is characterized by turbulent staining of the blood flow, and the left portal vein, which is a direct continuation of the umbilical vein, are visualized; b, Oblique transverse section of the fetal abdomen to visualize the connection of the left portal vein and the main portal vein, which form the right portal vein. UV, umbilical vein; LPV, left portal vein; RPV, right portal vein; MPV, main portal vein; DV, ductus venosus

Download (171KB)
4. Fig. 3. Volumetric blood flow (Q) of the vessels of the fetal umbilical-portal venous system in the study groups: a, in umbilical vein; b, Left portal vein; c, right portal vein. GDM, gestational diabetes mellitus; PGSD, pregestational diabetes mellitus. * Significance level р < 0.05

Download (236KB)
5. Fig. 4. Volumetric blood flow (Q) of the fetal liver in the III trimester of pregnancy in the study groups: a, in left lobe of the liver; b, in right lobe of the liver; c, total liver blood flow. GDM, gestational diabetes mellitus; PGSD, pregestational diabetes mellitus. * Significance level р < 0.05

Download (364KB)
6. Рис. 5. Фракции шунтирования в исследуемых группах: а — в венозном протоке; b — в главной портальной вене. ГСД — гестационный сахарный диабет; ПГСД — прегестационный сахарный диабет. * Уровень значимости р < 0,05

Download (140KB)
7. Fig. 6. Linear mixed models. Changes depending on the gestational age in the study groups: a, umbilical vein volumetric blood flow; b, normalized umbilical vein volumetric blood flow; c, total liver volumetric blood flow; d, normalized total volumetric liver volumetric blood flow. Data are presented as means with 95 % confidence intervals. No overlap of the 95 % confidence interval indicates significant differences between the groups. Q, volumetric blood flow; GDM, gestational diabetes mellitus; PGSD, pregestational diabetes mellitus

Download (228KB)
8. Fig. 7. Linear mixed models. Changes in the ductus venosus shunt fraction depending on the gestational age in the study groups. Data are presented as means with 95 % confidence intervals. No overlap of the 95 % confidence interval indicates significant differences between the groups. GDM, gestational diabetes mellitus; PGSD, pregestational diabetes mellitus

Download (76KB)

Copyright (c) 2024 Eсо-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».