Blood flow redistribution in the fetal umbilical-portal venous system in pregnancy complicated by diabetes mellitus
- Authors: Kopteeva E.V.1, Shelaeva E.V.1, Alekseenkova E.N.1, Kapustin R.V.1, Kogan I.Y.1
-
Affiliations:
- The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
- Issue: Vol 73, No 2 (2024)
- Pages: 27-41
- Section: Original study articles
- URL: https://journals.rcsi.science/jowd/article/view/259234
- DOI: https://doi.org/10.17816/JOWD625384
- ID: 259234
Cite item
Abstract
BACKGROUND: The fetal liver plays a central role in energy metabolism and is supplied mainly by the vessels of the umbilical-portal venous system. Redistribution of blood flow in this system is a key adaptive response of the fetus to environmental change.
AIM: The aim of this study was to evaluate the hemodynamic redistribution in the fetal umbilical-portal venous system in pregnant women with pregestational diabetes mellitus, gestational diabetes mellitus and in healthy pregnant women.
MATERIALS AND METHODS: This prospective cohort single-center study was conducted at the Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott, Saint Petersburg between February 2022 and September 2023. The study included 188 patients who made up the following comparison groups: pregestational diabetes mellitus (n = 86), gestational diabetes mellitus (n = 44), and control (n = 58). Patients underwent ultrasound from 30+0 to 41+3 weeks with assessment of venous hemodynamics in the vessels of the umbilical-portal venous system such as the umbilical vein, left portal vein, right portal vein, main portal vein, and ductus venosus.
RESULTS: The umbilical vein volumetric blood flow in the I group exceeded that in the II group by 23.60 ml/min/kg and that in the control group by 30.35 ml/min/kg (p < 0.001). The total liver volumetric blood flow in patients with pregestational diabetes mellitus (106.85 ml/min/kg) also exceeded that in the gestational diabetes mellitus group by 28.04 ml/min/kg and that in the control group by 33.73 ml/min/kg (p < 0.001). The umbilical vein and total fetal liver blood flows increased to full-term pregnancy, but, when normalized by the estimated fetal weight, the both flows showed a downward trend at 37–41 weeks of gestation (p < 0.001). No significant differences were revealed in the ductus venosus volumetric blood flow in the study groups. However, there was a significant decrease in the ductus venosus shunt fraction in patients with pregestational diabetes mellitus (16.83 %) by −8.34 % compared to the control group (24.56 %) and by −5.65 % compared to the II group (22.89 %). The downward trend persisted throughout the third trimester of pregnancy and reached its maximum at full-term (p < 0.001).
CONCLUSIONS: With pregestational diabetes mellitus, there is a priority redistribution of highly oxygenated blood from the umbilical vein to the right lobe of the fetal liver, accompanied by a decrease in the ductus venosus shunt fraction. This may underlie the pathogenesis of such complications as fetal macrosomia and diabetic fetopathy.
Full Text
##article.viewOnOriginalSite##About the authors
Ekaterina V. Kopteeva
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: ekaterina_kopteeva@bk.ru
ORCID iD: 0000-0002-9328-8909
SPIN-code: 9421-6407
MD
Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034Elizaveta V. Shelaeva
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: eshelaeva@yandex.ru
ORCID iD: 0000-0002-9608-467X
SPIN-code: 7440-0555
MD, Cand. Sci. (Med.)
Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034Elena N. Alekseenkova
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: ealekseva@gmail.com
ORCID iD: 0000-0002-0642-7924
SPIN-code: 3976-2540
MD
Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034Roman V. Kapustin
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: kapustin.roman@gmail.com
ORCID iD: 0000-0002-2783-3032
SPIN-code: 7300-6260
MD, Dr. Sci. (Med.)
Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034Igor Yu. Kogan
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Author for correspondence.
Email: ikogan@mail.ru
ORCID iD: 0000-0002-7351-6900
SPIN-code: 6572-6450
MD, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences
Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034References
- Murphy HR, Howgate C, O’Keefe J, et al. Characteristics and outcomes of pregnant women with type 1 or type 2 diabetes: a 5-year national population-based cohort study. Lancet Diabetes Endocrinol. 2021;9(3):153–164. doi: 10.1016/S2213-8587(20)30406-X
- Eidem I, Vangen S, Hanssen KF, et al. Perinatal and infant mortality in term and preterm births among women with type 1 diabetes. Diabetologia. 2011;54(11):2771–2778. doi: 10.1007/s00125-011-2281-7
- Persson M, Norman M, Hanson U. Obstetric and perinatal outcomes in type 1 diabetic pregnancies: a large, population-based study. Diabetes Care. 2009;32(11):2005–2009. doi: 10.2337/DC09-0656
- Evers I, De Valk H, Mol B, et al. Macrosomia despite good glycaemic control in Type I diabetic pregnancy; results of a nationwide study in the Netherlands. Diabetologia. 2002;45(11):1484–1489. doi: 10.1007/S00125-002-0958-7
- Feig DS, Donovan LE, Corcoy R, et al. Continuous glucose monitoring in pregnant women with type 1 diabetes (CONCEPTT): a multicentre international randomised controlled trial. Lancet. 2017;390(10110):2347–2359. doi: 10.1016/S0140-6736(17)32400-5
- Godfrey KM, Haugen G, Kiserud T, et al. Fetal liver blood flow distribution: role in human developmental strategy to prioritize fat deposition versus brain development. PLoS One. 2012;7(8). doi: 10.1371/journal.pone.0041759
- Kessler J, Rasmussen S, Godfrey K, et al. Longitudinal study of umbilical and portal venous blood flow to the fetal liver: low pregnancy weight gain is associated with preferential supply to the fetal left liver lobe. Pediatr Res. 2008;63(3):315–320. doi: 10.1203/PDR.0B013E318163A1DE
- Tchirikov M, Kertschanska S, Stürenberg HJ, et al. Liver blood perfusion as a possible instrument for fetal growth regulation. Placenta. 2002;23(Suppl A):S153–S158. doi: 10.1053/plac.2002.0810
- Yagel S, Kivilevitch Z, Cohen SM, et al. The fetal venous system, part I: normal embryology, anatomy, hemodynamics, ultrasound evaluation and Doppler investigation. Ultrasound Obstet Gynecol. 2010;35(6):741–750. doi: 10.1002/uog.7618
- Kiserud T, Kessler J, Ebbing C, et al. Ductus venosus shunting in growth-restricted fetuses and the effect of umbilical circulatory compromise. Ultrasound Obstet Gynecol. 2006;28(2):143–149. doi: 10.1002/UOG.2784
- Hsu CN, Hou CY, Hsu WH, et al. Early-life origins of metabolic syndrome: mechanisms and preventive aspects. Int J Mol Sci. 2021;22(21). doi: 10.3390/IJMS222111872
- Kuzawa CW. Fetal origins of developmental plasticity: are fetal cues reliable predictors of future nutritional environments? Am J Hum Biol. 2005;17(1):5–21. doi: 10.1002/AJHB.20091
- Ikenoue S, Waffarn F, Sumiyoshi K, et al. Maternal insulin resistance in pregnancy is associated with fetal fat deposition: findings from a longitudinal study. Am J Obstet Gynecol. 2023;228(4):455.e1–455.e8. doi: 10.1016/J.AJOG.2022.10.015
- Nicholas LM, Morrison JL, Rattanatray L, et al. The early origins of obesity and insulin resistance: timing, programming and mechanisms. Int J Obes. 2016;40(2):229–238. doi: 10.1038/IJO.2015.178
- Opheim GL, Moe Holme A, Blomhoff Holm M, et al. The impact of umbilical vein blood flow and glucose concentration on blood flow distribution to the fetal liver and systemic organs in healthy pregnancies. FASEB J. 2020;34(9):12481–12491. doi: 10.1096/FJ.202000766R
- Metzger BK. International Association of Diabetes and Pregnancy Study Groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care. 2010;33(3):676–682. doi: 10.2337/dc09-1848
- Dedov I, Shestakova M, Mayorov A, et al. Standards of specialized diabetes care. 11th Edition. Diabetes mellitus. 2023;26(2S):1–157. EDN: DCKLCI doi: 10.14341/DM13042
- Nicolaides KH, Wright D, Syngelaki A, et al. Fetal Medicine Foundation fetal and neonatal population weight charts. Ultrasound Obstet Gynecol. 2018;52(1):44–51. doi: 10.1002/UOG.19073
- Lund A, Ebbing C, Rasmussen S, et al. Altered development of fetal liver perfusion in pregnancies with pregestational diabetes. PLoS One. 2019;14(3). doi: 10.1371/journal.pone.0211788
- Kiserud T, Rasmussen S, Skulstad S. Blood flow and the degree of shunting through the ductus venosus in the human fetus. Am J Obstet Gynecol. 2000;182(1):147–153. doi: 10.1016/S0002-9378(00)70504-7
- Haugen G, Kiserud T, Godfrey K, et al. Portal and umbilical venous blood supply to the liver in the human fetus near term. Ultrasound Obstet Gynecol. 2004;24(6):599–605. doi: 10.1002/UOG.1744
- Kessler J, Rasmussen S, Kiserud T. The fetal portal vein: normal blood flow development during the second half of human pregnancy. Ultrasound Obstet Gynecol. 2007;30(1):52–60. doi: 10.1002/UOG.4054
- Kiserud T, Hellevik LR, Hanson MA. Blood velocity profile in the ductus venosus inlet expressed by the mean/maximum velocity ratio. Ultrasound Med Biol. 1998;24(9):1301–1306. doi: 10.1016/S0301-5629(98)00131-8
- Narkevich AN, Narkevich AA, Vinogradov KA. Interval evaluation of median and it’s automation. Medical doctor and information technologies. 2013;4:40–49. EDN: RBSKUD
- Lund A, Ebbing C, Rasmussen S, et al. Maternal diabetes alters the development of ductus venosus shunting in the fetus. Acta Obstet Gynecol Scand. 2018;97(8):1032–1040. doi: 10.1111/aogs.13363
- Kessler J, Rasmussen S, Godfrey K, et al. Venous liver blood flow and regulation of human fetal growth: evidence from macrosomic fetuses. Am J Obstet Gynecol. 2011;204(5):429.e1–429.e7. doi: 10.1016/J.AJOG.2010.12.038
- Olofsson P, Sjöberg NO, Lingman G, et al. Fetal blood flow in diabetic pregnancy. J Perinat Med. 1987;15(6):545–554. doi: 10.1515/JPME.1987.15.6.545
- Tchirikov M, Schroder HJ, Hecher K. Ductus venosus shunting in the fetal venous circulation: regulatory mechanisms, diagnostic methods and medical importance. Ultrasound Obstet Gynecol. 2006;27(4):452–461. doi: 10.1002/UOG.2747
- Boito SM, Struijk PC, Ursem NTC, et al. Assessment of fetal liver volume and umbilical venous volume flow in pregnancies complicated by insulin-dependent diabetes mellitus. BJOG. 2003;110(11):1007–1013. doi: 10.1111/j.1471-0528.2003.02533.x
- Cox LA, Schlabritz-Loutsevitch N, Hubbard GB, et al. Gene expression profile differences in left and right liver lobes from mid-gestation fetal baboons: a cautionary tale. J Physiol. 2006;572(Pt 1):59. doi: 10.1113/JPHYSIOL.2006.105726
- Ikenoue S, Waffarn F, Ohashi M, et al. Prospective association of fetal liver blood flow at 30 weeks gestation with newborn adiposity. Am J Obstet Gynecol. 2017;217(2):204.e1–204.e8. doi: 10.1016/J.AJOG.2017.04.022
- Shelayeva EV, Tsybuk EM, Kopteyeva EV, et al. Anatomical and pathophysiological features of fetal circulation in the umbilical-portal venous system. Journal of Obstetrics and Women’s Diseases. 2022;71(4):107–119. EDN: YUCYXA doi: 10.17816/JOWD106526
- Tchirikov M, Kertschanska S, Schröder HJ. Differential effects of catecholamines on vascular rings from ductus venosus and intrahepatic veins of fetal sheep. J Physiol. 2003;548(2):519. doi: 10.1113/JPHYSIOL.2002.034470
- Haugen G, Bollerslev J, Henriksen T. Human fetoplacental and fetal liver blood flow after maternal glucose loading: a cross-sectional observational study. Acta Obstet Gynecol Scand. 2014;93(8):778–785. doi: 10.1111/AOGS.12419
- Kessler J, Rasmussen S, Kiserud T. The left portal vein as an indicator of watershed in the fetal circulation: development during the second half of pregnancy and a suggested method of evaluation. Ultrasound Obstet Gynecol. 2007;30(5):757–764. doi: 10.1002/UOG.5146
- Ikenoue S, Waffarn F, Sumiyoshi K, et al. Association of ultrasound-based measures of fetal body composition with newborn adiposity. Pediatr Obes. 2017;12(Suppl 1):86–93. doi: 10.1111/IJPO.12198
- Boito S, Struijk PC, Ursem NTC, et al. Umbilical venous volume flow in the normally developing and growth-restricted human fetus. Ultrasound Obstet Gynecol. 2002;19(4):344–9. doi: 10.1046/J.1469-0705.2002.00671.X
- Bellotti M, Pennati G, De Gasperi C, et al. Simultaneous measurements of umbilical venous, fetal hepatic, and ductus venosus blood flow in growth-restricted human fetuses. Am J Obstet Gynecol. 2004;190(5):1347–1358. doi: 10.1016/j.ajog.2003.11.018
- Wender-Ozegowska E, Gutaj P, Mantaj U, et al. Pregnancy outcomes in women with long-duration type 1 diabetes — 25 years of experience. J Clin Med. 2020;9(10):3223. doi: 10.3390/JCM9103223
- Murphy HR, Steel SA, Roland JM, et al. Obstetric and perinatal outcomes in pregnancies complicated by type 1 and type 2 diabetes: influences of glycaemic control, obesity and social disadvantage. Diabet Med. 2011;28(9):1060. doi: 10.1111/J.1464-5491.2011.03333.X
Supplementary files
