Current views on the diagnosis and prognosis of fetal growth restriction (A literature review)

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Fetal growth restriction remains a leading cause of preterm birth and neurological disorders in children and is associated with high neonatal and perinatal morbidity and mortality. Fetal growth restriction is strongly associated with preeclampsia, placental insufficiency, and does not tend to decrease in frequency. The terms “small for gestational age” and “fetal growth restriction” are similar in terms of fetometry, however, in modern literature, these concepts differ based on blood flow disorders in the “mother-placenta-fetus” system and perinatal complications. A deep understanding of the multifactorial pathogenesis of early and late fetal growth restriction will allow for developing targeted therapy of placental insufficiency. Determining the role of new placental growth biomarkers plays a significant role in understanding the pathogenesis of placental dysfunction and developing measures to predict placenta-associated pregnancy complications.

This review article highlights new approaches to effective fetal growth restriction screening. Recent advances in ultrasound diagnosis of fetal growth restriction provide the basis for multivariate testing that can provide cost-effective screening for placental-associated pregnancy complications, including fetal growth restriction.

About the authors

Irina V. Ignatko

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: ignatko_i_v@staff.sechenov.ru
ORCID iD: 0000-0002-9945-3848
SPIN-code: 8073-1817
Scopus Author ID: 15118951800

MD, MD, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences

Russian Federation, Moscow

Irina M. Bogomazova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: bogomazova_i_m@staff.sechenov.ru
ORCID iD: 0000-0003-1156-7726
SPIN-code: 9414-1218

MD, Cand. Sci. (Med.), Assistant Professor

Russian Federation, Moscow

Madina A. Kardanova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: kardanova_m_a@staff.sechenov.ru
ORCID iD: 0000-0002-4315-0717
SPIN-code: 3895-9666
Scopus Author ID: 57194429446

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

References

  1. Audette MC, Kingdom JC. Screening for fetal growth restriction and placental insufficiency. Semin Fetal Neonatal Med. 2018;23(2):119–125. doi: 10.1016/j.siny.2017.11.004
  2. Damodaram M, Story L, Kulinskaya E, et al. Early adverse perinatal complications in preterm growth-restricted fetuses. Aust N Z J Obstet Gynaecol. 2011;51(3):204–209. doi: 10.1111/j.1479-828X.2011.01299.x
  3. Lees C, Marlow N, Arabin B, et al.; TRUFFLE Group. Perinatal morbidity and mortality in early-onset fetal growth restriction: cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE). Ultrasound Obstet Gynecol. 2013;42 (4):400–408. doi: 10.1002/uog.13190
  4. Nardozza LM, Caetano AC, Zamarian AC, et al. Fetal growth restriction: current knowledge. Arch Gynecol Obstet. 2017;295(5):1061–1077. doi: 10.1007/s00404-017-4341-9
  5. Flenady V, Wojcieszek AM, Middleton P, et al. Stillbirths: recall to action in high-income countries. Lancet. 2016;387(100190):691–702. doi: 10.1016/S0140-6736(15)01020-X
  6. International Stillbirth Alliance Collaborative for Improving Classification of Perinatal Deaths, Flenady V, Wojcieszek AM, Ellwood D, et al. Classification of causes and associated conditions for stillbirths and neonatal deaths. Semin Fetal Neonatal Med. 2017;22(3):176–185. doi: 10.1016/j.siny.2017.02.009
  7. Barker DJ. Fetal origins of coronary heart disease. BMJ. 1995;311(6998):171–174. doi: 10.1136/bmj.311.6998.171
  8. Barker DJ. In utero programming of chronic disease. Clin Sci (Lond). 1998;95(2):115–128.
  9. Kurtser MA, Sichinava LG, Shishkina DI, et al. Fetal growth restriction: current diagnostic criteria, management of pregnancy and labor. Gynecology, Obstetrics and Perinatology. 2023;22(1):5–11. (In Russ.) doi: 10.20953/1726-1678-2023-1-5-11
  10. Gordijn SJ, Beune IM, Thilaganathan B, et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2016;48(3):333–339. doi: 10.1002/uog.15884
  11. Podzolkova NM, Denisova YuV, Skvortsova MYu, et al. Fetal growth restriction: unresolved issues of risk stratification, early diagnosis, and obstetric management. Gynecology, Obstetrics and Perinatology. 2021;20(5):76–86. (In Russ.) doi: 10.20953/1726-1678-2021-5-76-86
  12. Melamed N, Baschat A, Yinon Y, et al. FIGO (international Federation of Gynecology and obstetrics) initiative on fetal growth: best practice advice for screening, diagnosis, and management of fetal growth restriction. Int J Gynaecol Obstet. 2021;152(1):3–57. doi: 10.1002/ijgo.13522
  13. Hung TH, Hsieh TT, Chen SF. Risk of abnormal fetal growth in women with early- and late-onset preeclampsia. Pregnancy Hypertens. 2018;12:201–206. doi: 10.1016/j.preghy.2017.09.003
  14. Crovetto F, Triunfo S, Crispi F, et al. Differential performance of first-trimester screening in predicting small-for-gestational-age neonate or fetal growth restriction. Ultrasound Obstet Gynecol. 2017;49(3):349–356. doi: 10.1002/uog.15919
  15. Ignatko IV, Miryushchenko MM. Predictive factors for intrauterine fetal growth restriction. Health and Education Millennium. 2016;18(1):1–4. (In Russ.)
  16. Cignini P, Maggio Savasta L, Gulino FA, et al. Predictive value of pregnancy-associated plasma protein-A (PAPP-A) and free beta-hCG on fetal growth restriction: results of a prospective study. Arch Gynecol Obstet. 2016;293(6):1227–1233. doi: 10.1007/s00404-015-3947-z
  17. Karagiannis G, Akolekar R, Sarquis R, et al. Prediction of small-for-gestation neonates from biophysical and biochemical markers at 11-13 weeks. Fetal Diagn Ther. 2011;29(2):148–154. doi: 10.1159/000321694
  18. Smith GC, Stenhouse EJ, Crossley JA, et al. Early pregnancy levels of pregnancy-associated plasma protein a and the risk of intrauterine growth restriction, premature birth, preeclampsia, and stillbirth. J Clin Endocrinol Metab. 2002;87(4):1762–1767. doi: 10.1210/jcem.87.4.8430
  19. D’Antonio F, Rijo C, Thilaganathan B, et al. Association between first-trimester maternal serum pregnancy-associated plasma protein-A and obstetric complications. Prenat Diagn. 2013;33(9):839–847. doi: 10.1002/pd.4141
  20. Khalil A, Sodre D, Syngelaki A, et al. Maternal hemodynamics at 11–13 weeks of gestation in pregnancies delivering small for gestational age neonates. Fetal Diagn Ther. 2012;32(4):231–238. doi: 10.1159/000339480
  21. Zafiridi NV. Klinicheskoe znachenie angiogennykh markerov dlya vyrabotki taktiki beremennykh s platsento-asotsiirovannymi oslozhneniyami [dissertation abstract]. Moscow; 2022. (In Russ.) [cited 2023 May 25]. Available from: https://www.dissercat.com/content/klinicheskoe-znachenie-angiogennykh-markerov-dlya-vyrabotki-taktiki-vedeniya-beremennykh-s
  22. Romero R, Nien JK, Espinoza J, et al. A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble vascular endothelial growth factor receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia and deliver a small for gestational age neonate. J Matern Fetal Neonatal Med. 2008;21(1):9–23. doi: 10.1080/14767050701830480
  23. Maynard SE, Min JY, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–658. doi: 10.1172/JCI17189
  24. Venkatesha S, Toporsian M, Lam C, et al. Soluble endo glin contributes to the pathogenesis of preeclampsia. Nat Med. 2006;12(6):642–649. doi: 10.1038/nm1429
  25. McCowan LM, Thompson JM, Taylor RS, et al.; SCOPE consortium. Prediction of small for gestational age infants in healthy nulliparous women using clinical and ultrasound risk factors combined with early pregnancy biomarkers. PLoS One. 2017;12(1). doi: 10.1371/journal.pone.0169311
  26. Witwicki J, Chaberek K, Szymecka-Samaha N, et al. sFlt-1/PlGF ratio in prediction of short-term neonatal outcome of small for gestational age neonates. Children (Basel). 2021;8(8). doi: 10.3390/children8080718
  27. Quezada MS, Rodríguez-Calvo J, Villalaín C, et al. sFlt-1/PlGF ratio and timing of delivery in early-onset fetal growth restriction with antegrade umbilical artery flow. Ultrasound Obstet Gynecol. 2020;56(4):549–556. doi: 10.1002/uog.21949
  28. Lesmes C, Gallo DM, Gonzalez R, et al. Prediction of small-for-gestational-age neonates: screening by maternal serum biochemical markers at 19–24 weeks. Ultrasound Obstet Gynecol. 2015;46(3):341–349. doi: 10.1002/uog.14899
  29. Valiño N, Giunta G, Gallo DM, et al. Biophysical and biochemical markers at 30-34 weeks’ gestation in the prediction of adverse perinatal outcome. Ultrasound Obstet Gynecol. 2016;47(2):194–202. doi: 10.1002/uog.14928
  30. Gaccioli F, Aye ILMH, Sovio U, et al. Screening for fetal growth restriction using fetal biometry combined with maternal biomarkers. Am J Obstet Gynecol. 2018;218(2S):S725–S737. doi: 10.1016/j.ajog.2017.12.002
  31. Kudinova EI. Rol’ placentarnogo belka PP13 v formirovanii placentarnoj nedostatochnosti I zaderzhki rosta ploda [abstract dissertation]. Moscow; 2016. (In Russ.) [cited 2023 May 25]. Available from: https://www.dissercat.com/content/rol-platsentarnogo-belka-pp-13-v-formirovanii-platsentarnoi-nedostatochnosti-i-zaderzhki-ros
  32. Aghababaei M, Perdu S, Irvine K, et al. A disintegrin and metalloproteinase 12 (ADAM12) localizes to invasive trophoblast, promotes cell invasion and directs column outgrowth in early placental development. Mol Hum Reprod. 2014;20(3):235–249. doi: 10.1093/molehr/gat084
  33. Biadasiewicz K, Fock V, Dekan S, et al. Extravillous trophoblast-associated ADAM12 exerts pro-invasive properties, including induction of integrin beta 1-mediated cellular spreading. Biol Reprod. 2014;90(5). doi: 10.1095/biolreprod.113.115279
  34. Yu N, Cui H, Chen X, et al. First trimester maternal serum analytes and second trimester uterine artery Doppler in the prediction of preeclampsia and fetal growth restriction. Taiwan J Obstet Gynecol. 2017;56(3):358–361. doi: 10.1016/j.tjog.2017.01.009
  35. El-Sherbiny W, Nasr A, Soliman A. Metalloprotease (ADAM12-S) as a predictor of preeclampsia: correlation with severity, maternal complications, fetal outcome, and Doppler parameters. Hypertens Pregnancy. 2012;31(4):442–450. doi: 10.3109/10641955.2012.690059
  36. Grigorieva KN, Bitsadze VO, Khizroeva JK, et al. Metalloproteinases as biochemical markers of pregnancy pathology. Obstetrics, Gynecology and Reproduction. 2022;16(1):38–47. (In Russ.) doi: 10.17749/2313-7347/ob.gyn.rep.2022.275
  37. Yakovleva NY, Vasileva EY, Kuznetsova LV, et al. The content of matrix metalloproteinase-12 in pregnancy complicated by preeclampsia. Journal of Obstetrics and Women’s Diseases. 2017;66(6):66–72. (In Russ.) doi: 10.17816/JOWD66666-72
  38. Swissa SS, Walfisch A, Yaniv-Salem S, et al. Maternal blood angiogenic factors and the prediction of critical adverse perinatal outcomes among small-for-gestational-age pregnancies. Am J Perinatol. 2022. doi: 10.1055/a-1798-1829
  39. Zamarian AC, Araujo Júnior E, Daher S, et al. Evaluation of biochemical markers combined with uterine artery Doppler parameters in fetuses with growth restriction: a case-control study. Arch Gynecol Obstet. 2016;294(4):715–723. doi: 10.1007/s00404-016-4024-y
  40. Ignatko IV, Yakubova DI, Megrabyan AD, et al. Clinical significance of assessing autoantibody level in diagnostics of early and late fetal growth retardation. Obstetrics, Gynecology and Reproduction. 2022;16(4):450–462. (In Russ.) doi: 10.17749/2313-7347/ob.gyn.rep.2022.340
  41. Horgan RP, Broadhurst DI, Walsh SK, et al. Metabolic profiling uncovers a phenotypic signature of small for gestational age in early pregnancy. J Proteome Res. 2011;10(8):3660–3673. doi: 10.1021/pr2002897
  42. Heazell AE, Bernatavicius G, Warrander L, et al. A metabolomic approach identifies differences in maternal serum in third trimester pregnancies that end in poor perinatal outcome. Reprod Sci. 2012;19(8):863–875. doi: 10.1177/1933719112438446
  43. Maitre L, Fthenou E, Athersuch T, et al. Urinary metabolic profiles in early pregnancy are associated with preterm birth and fetal growth restriction in the Rhea mother-child cohort study. BMC Med. 2014;12. doi: 10.1186/1741-7015-12-110
  44. Chim SS, Shing TK, Hung EC, et al. Detection and characterization of placental microRNAs in maternal plasma. Clin Chem. 2008;54(3):482–490. doi: 10.1373/clinchem.2007.097972
  45. Tagliaferri S, Cepparulo P, Vinciguerra A, et al. miR-16-5p, miR-103-3p, and miR-27b-3p as early peripheral biomarkers of fetal growth restriction. Front Pediatr. 2021;9. doi: 10.3389/fped.2021.611112
  46. Velauthar L, Plana MN, Kalidindi M, et al. First-trimester uterine artery Doppler and adverse pregnancy outcome: a meta-analysis involving 55,974 women. Ultrasound Obstet Gynecol. 2014;43(5):500–507. doi: 10.1002/uog.13275
  47. Levytska K, Higgins M, Keating S, et al. Placental patho logy in relation to uterine artery doppler findings in pregnancies with severe intrauterine growth restriction and abnormal umbilical artery Doppler changes. Am J Perinatol. 2017;34(5):451–457. doi: 10.1055/s-0036-1592347
  48. Martin AM, Bindra R, Curcio P, et al. Screening for pre-eclampsia and fetal growth restriction by uterine artery Doppler at 11–14 weeks of gestation. Ultrasound Obstet Gynecol. 2001;18(6):583–586. doi: 10.1046/j.0960-7692.2001.00594.x
  49. DeVore GR. The importance of the cerebroplacental ratio in the evaluation of fetal well-being in SGA and AGA fetuses. Am J Obstet Gynecol. 2015;213(1):5–15. doi: 10.1016/j.ajog.2015.05.024

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eсо-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies