Serotonin and cyclic sleep organization in full-term newborn infants with intrauterine growth retardation
- 作者: Zvereva N.A.1, Milyutina Y.P.1, Arutjunyan A.V.1, Evsyukova I.I.1
-
隶属关系:
- The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
- 期: 卷 71, 编号 6 (2022)
- 页面: 5-14
- 栏目: Original study articles
- URL: https://journals.rcsi.science/jowd/article/view/125981
- DOI: https://doi.org/10.17816/JOWD112611
- ID: 125981
如何引用文章
详细
BACKGROUND: The high frequency of neurological and mental diseases in children who had intrauterine retardatiojn development indicates the need to study specific markers of disorders of fetal brain functional development, in particular, the state of the serotonergic system, which plays a key role in the morpho-functional development of the brain in early ontogenesis.
AIM: To study the content of serotonin in full-term newborns with intrauterine development delay in comparison with quantitative and qualitative characteristics of sleep.
MATERIALS AND MЕTHODS: The main group consisted of 26 newborns, whose intrauterine development took place in conditions of chronic placental insufficiency, which led to the formation of an asymmetric form of intrauterine retardatiojn development. The control group consisted of 72 healthy newborns from healthy mothers without pregnancy complications. Children of each group are divided into three subgroups depending on gestational age: I — 37, II — 38, III — 39–40 weeks. In all children, 7–12 hours after birth, an electropoligram of sleep was recorded (an electroencephalograph of the company “Mizar”, Russia) and its quantitative and qualitative analyses were carried out, highlighting the orthodox, paradoxical phase and undifferentiated state. The serotonin content was determined in platelet-rich plasma of blood from the umbilical cord vein after birth, as well as in a platelet suspension prepared from venous blood taken on the first day of life. The content of serotonin in platelets was judged by the indicator obtained by dividing the amount of serotonin in the platelet suspension by the platelet level. The amount of serotonin was determined by high-performance liquid chromatography with electrochemical detection. Statistical analysis was performed using the Statistica 6 program (Statsoft Inc, USA).
RESULTS: We report here a low content of serotonin in platelet-rich plasma and platelets of newborns with intrauterine growth retardation and the absence of its normal increase in weeks 37–39 of intrauterine development, as well as a violation of the genetic programming for the sleep-wake cycle organization.
CONCLUSIONS: Assessment of the serotonin-producing system of the brain in comparison with the newborn sleep pattern can serve as a diagnostic marker of brain damage and substantiate the need for timely application of neuroprotection.
作者简介
Natalia Zvereva
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: tata-83@bk.ru
ORCID iD: 0000-0002-1220-1147
俄罗斯联邦, Saint Petersburg
Yuliya Milyutina
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: milyutina1010@mail.ru
ORCID iD: 0000-0003-1951-8312
SPIN 代码: 6449-5635
Scopus 作者 ID: 24824836300
Researcher ID: AAE-6182-2019
Cand. Sci. (Biol.)
俄罗斯联邦, Saint PetersburgAlexander Arutjunyan
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: alexarutiunjan@gmail.com
ORCID iD: 0000-0002-0608-9427
Scopus 作者 ID: 6506430871
Dr. Sci. (Biol.), Professor, Honored Scientist of the Russian Federation
俄罗斯联邦, Saint PetersburgInna Evsyukova
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
编辑信件的主要联系方式.
Email: eevs@yandex.ru
ORCID iD: 0000-0003-4456-2198
SPIN 代码: 4444-4567
MD, Dr. Sci. (Med.), Professor
俄罗斯联邦, Saint Petersburg参考
- Öztürk HNO, Türker PF. Fetal programming: could intrauterin life affect health status in adulthood? Obstet Gynecol Sci. 2021;64(6):473–483. doi: 10.5468/ogs.21154
- Olfson M, Blanco C, Wang S, et al. National trends in the mental health care of children, adolescents, and adults by office-based physicians. JAMA Psychiatry. 2014;71(1):81–90. doi: 10.1001/jamapsychiatry.2013.3074
- Gumusoglu SB, Chilukuri ASS, Santillan DA, et al. Neurodevelopmental outcomes of prenatal preeclampsia exposure. Trends Neurosci. 2020;43(4):253–268. doi: 10.1016/j.tins.2020.02.003
- Evsyukova II. Cerebral disorders and consequences of delayed intrauterine development of a full-term baby: the role of oxidative stress and melatonin. Human Physiology. 2022;48(3):340–345. (In Russ.). doi: 10.31857/S0131164622030055
- Morris G, Fernandes BS, Puri BK, et al. Leaky brain in neurological and psychiatric disorders: drivers and consequences. Aust N Z J Psychiatry. 2018;52(10):924–948. doi: 10.1177/0004867418796955
- Wang Y, Fu W, Liu J. Neurodevelopment in children with intrauterine growth restriction: adverse effects and interventions. J Matern Fetal Neonatal Med. 2016;29(4):660–668. doi: 10.3109/14767058.2015.1015417
- Nardozza LM, Caetano AC, Zamarian AC, et al. Fetal growth restriction: current knowledge. Arch Gynecol Obstet. 2017;295(5):1061–1077. doi: 10.1007/s00404-017-4341-9
- Hartkopf J, Schleger F, Keune J, et al. Impact of intrauterine growth restriction on cognitive and motor development at 2 years of age. Front Physiol. 2018;9. doi: 10.3389/fphys.2018.01278
- Sacchi C, Marino C, Nosarti C, et al. Association of intrauterine growth restriction and small for gestational age status with childhood cognitive outcomes: a systematic review and meta-analysis. JAMA Pediatr. 2020;174(8):772–781. doi: 10.1001/jamapediatrics.2020.1097
- Korkalainen N, Partanen L, Räsänen J, et al. Fetal hemodynamics and language skills in primary school-aged children with fetal growth restriction: a longitudinal study. Early Hum Dev. 2019;134:34–40. doi: 10.1016/j.earlhumdev.2019.05.019
- Baschat AA. Neurodevelopment after fetal growth restriction. Fetal Diagn Ther. 2014;36(2):136–142. doi: 10.1159/000353631
- Armengaud JB, Yzydorczyk C, Siddeek B, et al. Intrauterine growth restriction: clinical consequences on health and disease at adulthood. Reprod Toxicol. 2021;99:168–176. doi: 10.1016/j.reprotox.2020.10.005
- Kepser LJ, Homberg JR. The neurodevelopmental effects of serotonin: a behavioural perspective. Behav Brain Res. 2015;277:3–13. doi: 10.1016/j.bbr.2014.05.022
- Sidorova IS, Nikitina NA, Unanyan AL, et al. Development of the human fetal brain and the influence of prenatal damaging factors on the main stages of neurogenesis. Russian Bulletin of Obstetrician-Gynecologist. 2022;22(1):35-44. (In Russ.). doi: 10.17116/rosakush20222201135
- Jenkins TA, Nguyen JC, Polglaze KE, et al. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients. 2016;8(1). doi: 10.3390/nu8010056
- Evsyukova II. The cyclic organization of sleep in early ontogenesis in different conditions of intrauterine fetus development. Russian Journal of Physiology. 2013;99(2):166–174.
- Oreland L, Hallman J. Blood platelets as a peripheral marker for the central serotonin system. Nord J Psychiatry. 1989;43(20):43–51. doi: 10.3109/08039488909100833
- Anderson GM, Czarkowski K, Ravski N, et al. Platelet serotonin in newborns and infants: ontogeny, heritability, and effect of in utero exposure to selective serotonin reuptake inhibitors. Pediatr Res. 2004;56(3):418–422. doi: 10.1203/01.PDR.0000136278.23672.A0
- Hazra M, Benson S, Sandler M. Blood 5-hydroxytryptamine levels in the newborn. Arch Dis Child. 1965;40(213):513–515. doi: 10.1136/adc.40.213.513
- Evsyukova II, Koval’chuk-Kovalevskaya OV, Maslyanyuk NA, et al. Osobennosti tsiklicheskoi organizatsii sna i produktsii melatonina u donoshennykh novorozhdennykh detei s zaderzhkoi vnutriutrobnogo razvitiya. Fiziologiya cheloveka. 2013;39(6):617–624. doi: 10.7868/S0131164613060040
- Ryukert EN. Osobennosti funktsionirovaniya serotoninergicheskoy i opiodnoy sistem u detey pervykh mesyatsev zhizni s gipoksicheski ishemicheskim porazheniem TsNS, vzaimosvyaz’ s temperamentom. [dissertation abstract]. Moscow; 2007. [cited 2022 Nov 12]. Available from: https://www.dissercat.com/content/osobennosti-funktsionirovaniya-serotoninergicheskoi-i-opiodnoi-sistem-u-detei-pervykh-mesyat
- Berezhanskaya SB, Luk’yanova EA. Level of serum biogenous amines in children with perinatal hypoxic-ishemic and traumatic central nervous system lesion. Pediatriya. 2002;81(1):23–26.
- Miheeva IG, Ryukert EN, Brusov OS, et al. Serum serotonin level in neonates with hypoxic ischemic CNS. Pediatriya. Zhurnal im. G.N. Speranskogo. 2008;87(1):40–44.
- Gall V, Kosec V, Vranes HS, et al. Platelet serotonin concentration at term pregnancy and after birth: physiologic values for Croatian population. Coll Antropol. 2011;35(3):715–718.
- Furs VV, Doroshenko EM. Nekotorye pokazateli obmena triptofana pri fiziologicheski protekayushchei beremennosti. Zhurnal Grodnenskogo gosudarstvennogo meditsinskogo universiteta. 2011;(4):36–38. (In Russ.)
- Field T, Diego M, Hernandez-Reif M, et al. Prenatal serotonin and neonatal outcome: brief report. Infant Behav Dev. 2008;31(2):316–320. doi: 10.1016/j.infbeh.2007.12.009
- Rosenfeld CS. Placental serotonin signaling, pregnancy outcomes, and regulation of fetal brain development. Biol Reprod. 2020;102(3):532–538. doi: 10.1093/biolre/ioz204
- Kliman HJ, Quaratella SB, Setaro AC, et al. Pathway of maternal serotonin to the human embryo and fetus. Endocrinology. 2018;159(4):1609–1629. doi: 10.1210/en.2017-03025
- Balija M, Bordukalo-Niksic T, Mokrovic G, et al. Serotonin level and serotonin uptake in human platelets: a variable interrelation under marked physiological influences. Clin Chim Acta. 2011;412(3–4):299–304. doi: 10.1016/j.cca.2010.10.024
- Brenner B, Harney JT, Ahmed BA, et al. Plasma serotonin levels and the platelet serotonin transporter. J Neurochem. 2007;102(1):206–215. doi: 10.1111/j.1471-4159.2007.04542.x
- Baković P, Kesić M, Perić M, et al. Differential serotonin uptake mechanisms at the human maternal-fetal interface. Int J Mol Sci. 2021;22(15). doi: 10.3390/ijms22157807
- Forstner D, Guettler J, Gauster M. Changes in maternal platelet physiology during gestation and their interaction with trophoblasts. Int J Mol Sci. 2021;22(19). doi: 10.3390/ijms221910732
- Mercado CP, Kilic F. Molecular mechanisms of SERT in platelets: regulation of plasma serotonin levels. Mol Interv. 2010;10(4):231–241. doi: 10.1124/mi.10.4.6
- Ye W, Xie L, Li C, et al. Impaired development of fetal serotonergic neurons in intrauterine growth restricted baboons. J Med Primatol. 2014;43(4):284–287. doi: 10.1111/jmp.12116
- Laurent L, Deroy K, St-Pierre J, et al C. Human placenta expresses both peripheral and neuronal isoform of tryptophan hydroxylase. Biochimie. 2017;140:159–165. doi: 10.1016/j.biochi.2017.07.008
- Bonnin A, Goeden N, Chen K, et al. A transient placental source of serotonin for the fetal forebrain. Nature. 2011;472(7343):347–350. doi: 10.1038/nature09972
- Sundström E, Kölare S, Souverbie F, et al. Neurochemical differentiation of human bulbospinal monoaminergic neurons during the first trimester. Brain Res Dev Brain Res. 1993;75(1):1–12. doi: 10.1016/0165-3806(93)90059-j
- Verney C, Lebrand C, Gaspar P. Changing distribution of monoaminergic markers in the developing human cerebral cortex with special emphasis on the serotonin transporter. Anat Rec. 2002;267(2):87–93. doi: 10.1002/ar.10089
- Ranzil S, Walker DW, Borg AJ, et al. The relationship between the placental serotonin pathway and fetal growth restriction. Biochimie. 2019;161:80–87. doi: 10.1016/j.biochi.2018.12.016
- Yang CJ, Tan HP, Du YJ. The developmental disruptions of serotonin signaling may involved in autism during early brain development. Neuroscience. 2014;267:1–10. doi: 10.1016/j.neuroscience.2014.02.021
- Brummelte S, Mc Glanaghy E, Bonnin A, et al. Developmental changes in serotonin signaling: Implications for early brain function, behavior and adaptation. Neuroscience. 2017;342:212–231. doi: 10.1016/j.neuroscience.2016.02.037
- Nasyrova DI, Sapronova AYa, Balbashev AV, et al. Razvitie tsentral’noi i perifericheskoi serotonin-produtsiruyushchikh sistem u krys v ontogeneze. Zhurnal evolyutsionnoi biokhimii i fiziologii. 2009;45(1):68–74. (In Russ.)
- Roland CS, Hu J, Ren CE, et al. Morphological changes of placental syncytium and their implications for the pathogenesis of preeclampsia. Cell Mol Life Sci. 2016;73(2):365–376. doi: 10.1007/s00018-015-2069-x
- Gumusoglu S, Scroggins S, Vignato J, et al. The serotonin-immune axis in preeclampsia. Curr Hypertens Rep. 2021;23(7):37. doi: 10.1007/s11906-021-01155-4
- Liu D, Gao Q, Wang Y, et al. Placental dysfunction: the core mechanism for poor neurodevelopmental outcomes in the offspring of preeclampsia pregnancies. Placenta. 2022;126:224–232. doi: 10.1016/j.placenta.2022.07.014
- Rosenfeld CS. The placenta-brain-axis. J Neurosci Res. 2021;99(1):271–283. doi: 10.1002/jnr.24603
- Shallie PD, Naicker T. The placenta as a window to the brain: a review on the role of placental markers in prenatal programming of neurodevelopment. Int J Dev Neurosci. 2019;73:41–49. doi: 10.1016/j.ijdevneu.2019.01.003
- Chrzanowska B, Wańkowicz B, Prokopczyk J. Serotonin concentration in the rat fetal brain in experimental intrauterine dystrophy. Probl Med Wieku Rozwoj. 1984;13:193–197.
- Ye X, Shin BC, Baldauf C, et al. Developing brain glucose transporters, serotonin, serotonin transporter, and oxytocin receptor expression in response to early-life hypocaloric and hypercaloric dietary, and air pollutant exposures. Dev Neurosci. 2021;43(1):27–42. doi: 10.1159/000514709
- Homberg J, Mudde J, Braam B, et al. Blood pressure in mutant rats lacking the 5-hydroxytryptamine transporter. Hypertension. 2006;48(6):e115–e117. doi: 10.1161/01.HYP.0000246306.61289.d8
- Alenina N, Kikic D, Todiras M, et al. Growth retardation and altered autonomic control in mice lacking brain serotonin. Proc Natl Acad Sci USA. 2009;106(25):10332–10337. doi: 10.1073/pnas.0810793106
- Hanswijk SI, Spoelder M, Shan L, et al. Gestational factors throughout fetal neurodevelopment: the serotonin link. Int J Mol Sci. 2020;21(16). doi: 10.3390/ijms21165850
- Sato K. Placenta-derived hypo-serotonin situations in the developing forebrain cause autism. Med Hypotheses. 2013;80(4):368–372. doi: 10.1016/j.mehy.2013.01.002
- Sodhi MS, Sanders-Bush E. Serotonin and brain development. Int Rev Neurobiol. 2004;59:111–174. doi: 10.1016/S0074-7742(04)59006-2
- Peirano P, Algarín C, Uauy R. Sleep-wake states and their regulatory mechanisms throughout early human development. J Pediatr. 2003;143(4):S70–S79. doi: 10.1067/s0022-3476(03)00404-9
- Uchitel J, Vanhatalo S, Austin T. Early development of sleep and brain functional connectivity in term-born and preterm infants. Pediatr Res. 2022;91(4):771–786. doi: 10.1038/s41390-021-01497-4
补充文件
