Molecular epidemiology of infections caused by group B Streptococcus in pregnant women and newborns, and development of preventive vaccines

Cover Page


Cite item

Full Text

Abstract

Hypothesis/aims of study. The present analysis was undertaken to summarize current knowledge about molecular properties of group B streptococci (GBS), emphasizing potential targets of vaccines against neonatal GBS infection.

Study design, materials, and methods. This review is based on articles published mainly in the last ten years.

Results. Epidemiological data on serotypes, multilocus sequence types, clonal complexes of GBS and their relationship are presented. Genetic events in GBS populations indicate significant obstacles to vaccine development. We described key properties of major GBS virulence factors, such as capsular polysaccharide, pili, and cell adhesion molecules, as well as results of experimental immunization on their basis.

Conclusion. The population of invasive GBS strains is molecularly and genetically heterogeneous, which complicates selection of vaccine targets. Capsular switching, a low level of immunogenicity and variability of population composition are the most important factors that necessitate the accumulation and monitoring of molecular epidemiological data.

About the authors

Vasilisa A. Vasilyeva

Saint Petersburg State University

Author for correspondence.
Email: silis019@gmail.com

Student. The Department of Microbiology, Biological Faculty

Russian Federation, Saint Petersburg

Elena V. Shipitsyna

Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: shipitsyna@inbox.ru

PhD, DSci (Biology), Leading Researcher. The Laboratory of Microbiology

Russian Federation, Saint Petersburg

Kira V. Shalepo

Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: 2474151@mail.ru

PhD, Senior Researcher. The Laboratory of Microbiology

Russian Federation, Saint Petersburg, Russia

Alevtina M. Savicheva

Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: savitcheva@mail.ru

MD, PhD, DSci (Medicine), Professor, Honoured Scholar of the Russian Federation, the Head of the Laboratory of Microbiology

Russian Federation, Saint Petersburg

References

  1. Kawamura Y, Itoh Y, Mishima N, et al. High genetic similarity of Streptococcus agalactiae and Streptococcus difficilis: S. difficilis Eldar et al. 1995 is a later synonym of S. agalactiae Lehmann and Neumann 1896 (Approved Lists 1980). Int J Syst Evol Microbiol. 2005;55(Pt 2):961-965. doi: 10.1099/ijs.0.63403-0.
  2. Baker CJ. The spectrum of perinatal group B streptococcal disease. Vaccine. 2013;31 Suppl 4:D3-6. doi: 10.1016/j.vaccine.2013.02.030.
  3. Phares CR, Lynfield R, Farley MM, et al. Epidemiology of invasive group B streptococcal disease in the United States, 1999-2005. JAMA. 2008;299(17):2056-2065. doi: 10.1001/jama.299.17.2056.
  4. Verani JR, McGee L, Schrag SJ, et al. Prevention of perinatal group B streptococcal disease - revised guidelines from CDC, 2010. MMWR Recomm Rep. 2010;59(RR-10):1-36.
  5. Russell NJ, Seale AC, O’Sullivan C, et al. Risk of Early-Onset Neonatal Group B Streptococcal Disease with Maternal Colonization Worldwide: Systematic Review and Meta-analyses. Clin Infect Dis. 2017;65(suppl_2):S152-S159. doi: 10.1093/cid/cix655.
  6. Edmond KM, Kortsalioudaki C, Scott S, et al. Group B streptococcal disease in infants aged younger than 3 months: systematic review and meta-analysis. Lancet. 2012;379(9815):547-556. doi: 10.1016/s0140-6736(11)61651-6.
  7. Shabayek S, Spellerberg B. Group B Streptococcal Colonization, Molecular Characteristics, and Epidemiology. Front Microbiol. 2018;9:437. doi: 10.3389/fmicb.2018.00437.
  8. Schuchat A. Epidemiology of group B streptococcal disease in the United States: shifting paradigms. Clin Microbiol Rev. 1998;11(3):497-513. doi: 10.1128/CMR.11.3.497.
  9. Alhhazmi A, Hurteau D, Tyrrell GJ. Epidemiology of Invasive Group B Streptococcal Disease in Alberta, Canada, from 2003 to 2013. J Clin Microbiol. 2016;54(7):1774-1781. doi: 10.1128/JCM.00355-16.
  10. Slotved HC, Kong F, Lambertsen L, et al. Serotype IX, a Proposed New Streptococcus agalactiae Serotype. J Clin Microbiol. 2007;45(9):2929-2936. doi: 10.1128/JCM.00117-07.
  11. Le Doare K, Heath PT. An overview of global GBS epidemiology. Vaccine. 2013;31 Suppl 4:D7-12. doi: 10.1016/j.vaccine.2013.01.009.
  12. Martins ER, Pessanha MA, Ramirez M, et al. Analysis of group B streptococcal isolates from infants and pregnant women in Portugal revealing two lineages with enhanced invasiveness. J Clin Microbiol. 2007;45(10):3224-3229. doi: 10.1128/JCM.01182-07.
  13. Lin SM, Jang AY, Zhi Y, et al. Vaccination with a Latch Peptide Provides Serotype-Independent Protection against Group B Streptococcus Infection in Mice. J Infect Dis. 2017;217(1):93-102. doi: 10.1093/infdis/jix565.
  14. Jones N, Bohnsack JF, Takahashi S, et al. Multilocus Sequence Typing System for Group B Streptococcus. J Clin Microbiol. 2003;41(6):2530-2536. doi: 10.1128/jcm.41.6.2530-2536.2003.
  15. Luan SL, Granlund M, Sellin M, et al. Multilocus Sequence Typing of Swedish Invasive Group B Streptococcus Isolates Indicates a Neonatally Associated Genetic Lineage and Capsule Switching. J Clin Microbiol. 2005;43(8):3727-3733. doi: 10.1128/jcm.43.8.3727-3733.2005.
  16. Sorensen UB, Poulsen K, Ghezzo C, et al. Emergence and global dissemination of host-specific Streptococcus agalactiae clones. MBio. 2010;1(3). doi: 10.1128/mBio.00178-10.
  17. Da Cunha V, Davies MR, Douarre PE, et al. Streptococcus agalactiae clones infecting humans were selected and fixed through the extensive use of tetracycline. Nat Commun. 2014;5:4544. doi: 10.1038/ncomms5544.
  18. Davies HD, Jones N, Whittam TS, et al. Multilocus sequence typing of serotype III group B streptococcus and correlation with pathogenic potential. J Infect Dis. 2004;189(6):1097-1102. doi: 10.1086/382087.
  19. Bohnsack JF, Whiting A, Gottschalk M, et al. Population structure of invasive and colonizing strains of Streptococcus agalactiae from neonates of six U.S. Academic Centers from 1995 to 1999. J Clin Microbiol. 2008;46(4):1285-1291. doi: 10.1128/JCM.02105-07.
  20. Bisharat N, Crook DW, Leigh J, et al. Hyperinvasive Neonatal Group B Streptococcus Has Arisen from a Bovine Ancestor. J Clin Microbiol. 2004;42(5):2161-2167. doi: 10.1128/jcm.42.5.2161-2167.2004.
  21. Salloum M, van der Mee-Marquet N, Valentin-Domelier AS, Quentin R. Diversity of prophage DNA regions of Streptococcus agalactiae clonal lineages from adults and neonates with invasive infectious disease. PLoS One. 2011;6(5):e20256. doi: 10.1371/journal.pone.0020256.
  22. Li L, Wang R, Huang Y, et al. High Incidence of Pathogenic Streptococcus agalactiae ST485 Strain in Pregnant/Puerperal Women and Isolation of Hyper-Virulent Human CC67 Strain. Front Microbiol. 2018;9:50. doi: 10.3389/fmicb.2018.00050.
  23. Edwards MS. Group B streptococcal conjugate vaccine: A timely concept for which the time has come. Hum Vaccin. 2014;4(6):444-448. doi: 10.4161/hv.4.6.6507.
  24. Cieslewicz MJ, Chaffin D, Glusman G, et al. Structural and Genetic Diversity of Group B Streptococcus Capsular Polysaccharides. Infect Immun. 2005;73(5):3096-3103. doi: 10.1128/iai.73.5.3096-3103.2005.
  25. Watanabe M, Miyake K, Yanae K, et al. Molecular Characterization of a Novel 1, 3-Galactosyltransferase for Capsular Polysaccharide Synthesis by Streptococcus agalactiae Type Ib. J Biochem. 2002;131(2):183-191. doi: 10.1093/oxfordjournals.jbchem.a003086.
  26. Yamamoto S, Miyake K, Koike Y, et al. Molecular characterization of type-specific capsular polysaccharide biosynthesis genes of Streptococcus agalactiae type Ia. J Bacteriol. 1999;181(17):5176-5184.
  27. Chaffin DO, Beres SB, Yim HH, Rubens CE. The Serotype of Type Ia and III Group B Streptococci Is Determined by the Polymerase Gene within the Polycistronic Capsule Operon. J Bacteriol. 2000;182(16):4466-4477. doi: 10.1128/jb.182.16.4466-4477.2000.
  28. Brueggemann AB, Pai R, Crook DW, Beall B. Vaccine escaperecombinants emerge after pneumococcal vaccination in the United States. PLoS Pathog. 2007;3(11):e168. doi: 10.1371/journal.ppat.0030168.
  29. Brochet M, Couve E, Zouine M, et al. Genomic diversity and evolution within the species Streptococcus agalactiae. Microbes Infect. 2006;8(5):1227-1243. doi: 10.1016/j.micinf.2005.11.010.
  30. Martins ER, Melo-Cristino J, Ramirez M. Evidence for rare capsular switching in Streptococcus agalactiae. J Bacteriol. 2010;192(5):1361-1369. doi: 10.1128/JB.01130-09.
  31. Brochet M, Rusniok C, Couve E, et al. Shaping a bacterial genome by large chromosomal replacements, the evolutionary history of Streptococcus agalactiae. Proc Natl Acad Sci U S A. 2008;105(41):15961-15966. doi: 10.1073/pnas.0803654105.
  32. Bellais S, Six A, Fouet A, et al. Capsular switching in group B Streptococcus CC17 hypervirulent clone: a future challenge for polysaccharide vaccine development. J Infect Dis. 2012;206(11):1745-1752. doi: 10.1093/infdis/jis605.
  33. Meehan M, Cunney R, Cafferkey M. Molecular epidemiology of group B streptococci in Ireland reveals a diverse population with evidence of capsular switching. Eur J Clin Microbiol Infect Dis. 2014;33(7):1155-1162. doi: 10.1007/s10096-014-2055-5.
  34. Teatero S, McGeer A, Low DE, et al. Characterization of invasive group B streptococcus strains from the greater Toronto area, Canada. J Clin Microbiol. 2014;52(5):1441-1447. doi: 10.1128/JCM.03554-13.
  35. Teatero S, Ferrieri P, Martin I, et al. Serotype Distribution, Population Structure, and Antimicrobial Resistance of Group B Streptococcus Strains Recovered from Colonized Pregnant Women. J Clin Microbiol. 2017;55(2):412-422. doi: 10.1128/JCM.01615-16.
  36. Rosini R, Rinaudo CD, Soriani M, et al. Identification of novel genomic islands coding for antigenic pilus-like structures in Streptococcus agalactiae. Mol Microbiol. 2006;61(1):126-141. doi: 10.1111/j.1365-2958.2006.05225.x.
  37. Dramsi S, Caliot E, Bonne I, et al. Assembly and role of pili in group B streptococci. Mol Microbiol. 2006;60(6):1401-1413. doi: 10.1111/j.1365-2958.2006.05190.x.
  38. Cozzi R, Malito E, Lazzarin M, et al. Structure and assembly of group B streptococcus pilus 2b backbone protein. PLoS One. 2015;10(5):e0125875. doi: 10.1371/journal.pone.0125875.
  39. Nobbs AH, Rosini R, Rinaudo CD, et al. Sortase A utilizes an ancillary protein anchor for efficient cell wall anchoring of pili in Streptococcus agalactiae. Infect Immun. 2008;76(8):3550-3560. doi: 10.1128/IAI.01613-07.
  40. Lu B, Wang D, Zhou H, et al. Distribution of pilus islands and alpha-like protein genes of group B Streptococcus colonized in pregnant women in Beijing, China. Eur J Clin Microbiol Infect Dis. 2015;34(6):1173-1179. doi: 10.1007/s10096-015-2342-9.
  41. Margarit I, Rinaudo CD, Galeotti CL, et al. Preventing bacterial infections with pilus-based vaccines: the group B streptococcus paradigm. J Infect Dis. 2009;199(1):108-115. doi: 10.1086/595564.
  42. Madzivhandila M, Adrian PV, Cutland CL, et al. Distribution of pilus islands of group B streptococcus associated with maternal colonization and invasive disease in South Africa. J Med Microbiol. 2013;62(Pt 2):249-253. doi: 10.1099/jmm.0.052951-0.
  43. Martins ER, Andreu A, Melo-Cristino J, Ramirez M. Distribution of pilus islands in Streptococcus agalactiae that cause human infections: insights into evolution and implication for vaccine development. Clin Vaccine Immunol. 2013;20(2):313-316. doi: 10.1128/CVI.00529-12.
  44. Nuccitelli A, Cozzi R, Gourlay LJ, et al. Structure-based approach to rationally design a chimeric protein for an effective vaccine against Group B Streptococcus infections. Proc Natl Acad Sci U S A. 2011;108(25):10278-10283. doi: 10.1073/pnas.1106590108.
  45. Rosenau A, Martins K, Amor S, et al. Evaluation of the ability of Streptococcus agalactiae strains isolated from genital and neonatal specimens to bind to human fibrinogen and correlation with characteristics of the fbsA and fbsB genes. Infect Immun. 2007;75(3):1310-1317. doi: 10.1128/IAI.00996-06.
  46. Al Safadi R, Mereghetti L, Salloum M, et al. Two-component system RgfA/C activates the fbsB gene encoding major fibrinogen-binding protein in highly virulent CC17 clone group B Streptococcus. PLoS One. 2011;6(2):e14658. doi: 10.1371/journal.pone.0014658.
  47. Seo HS, Minasov G, Seepersaud R, et al. Characterization of fibrinogen binding by glycoproteins Srr1 and Srr2 of Streptococcus agalactiae. J Biol Chem. 2013;288(50):35982-35996. doi: 10.1074/jbc.M113.513358.
  48. Buscetta M, Papasergi S, Firon A, et al. FbsC, a novel fibrinogen-binding protein, promotes Streptococcus agalactiae-host cell interactions. J Biol Chem. 2014;289(30):21003-21015. doi: 10.1074/jbc.M114.553073.
  49. Al Safadi R, Amor S, Hery-Arnaud G, et al. Enhanced expression of lmb gene encoding laminin-binding protein in Streptococcus agalactiae strains harboring IS1548 in scpB-lmb intergenic region. PLoS One. 2010;5(5):e10794. doi: 10.1371/journal.pone.0010794.
  50. Lindahl G, Stalhammar-Carlemalm M, Areschoug T. Surface proteins of Streptococcus agalactiae and related proteins in other bacterial pathogens. Clin Microbiol Rev. 2005;18(1):102-127. doi: 10.1128/CMR.18.1.102-127.2005.
  51. Santillan DA, Andracki ME, Hunter SK. Protective immunization in mice against group B streptococci using encapsulated C5a peptidase. Am J Obstet Gynecol. 2008;198(1):114.e111-116. doi: 10.1016/j.ajog.2007.06.003.
  52. Santillan DA, Rai KK, Santillan MK, et al. Efficacy of polymeric encapsulated C5a peptidase-based group B streptococcus vaccines in a murine model. Am J Obstet Gynecol. 2011;205(3):249.e1-8. doi: 10.1016/j.ajog.2011.06.024.
  53. Филимонова В.Ю., Духовлинов И.В., Крамская Т.А., и др. Химерные белки на основе иммуногенных эпитопов поверхностных факторов патогенности стрептококков в качестве вакцины для профилактики инфекции, вызванной стрептококками группы В // Медицинский академический журнал. - 2016. - Т. 16. - № 3. - С. 82-89. [Filimonova VY, Dukhovlinov IV, Kramskaya TA, et al. Chimeric proteins based on the immunogenic epitopes of streptococcus surface pathogenicity factors as vaccines for group B streptococcal infections. Medical academic journal. 2016;16(3):82-89. (In Russ.)]
  54. Tamura GS, Hull JR, Oberg MD, Castner DG. High-affinity interaction between fibronectin and the group B streptococcal C5a peptidase is unaffected by a naturally occurring four-amino-acid deletion that eliminates peptidase activity. Infect Immun. 2006;74(10):5739-5746. doi: 10.1128/IAI.00241-06.
  55. Franken C, Haase G, Brandt C, et al. Horizontal gene transfer and host specificity of beta-haemolytic streptococci: the role of a putative composite transposon containing scpB and lmb. Mol Microbiol. 2002;41(4):925-935. doi: 10.1046/j.1365-2958.2001.02563.x.
  56. Rato MG, Bexiga R, Florindo C, et al. Antimicrobial resistance and molecular epidemiology of streptococci from bovine mastitis. Vet Microbiol. 2013;161(3-4):286-294. doi: 10.1016/j.vetmic.2012.07.043.
  57. Mu R, Kim BJ, Paco C, et al. Identification of a group B streptococcal fibronectin binding protein, SfbA, that contributes to invasion of brain endothelium and development of meningitis. Infect Immun. 2014;82(6):2276-2286. doi: 10.1128/IAI.01559-13.
  58. Stoner TD, Weston TA, Trejo J, Doran KS. Group B streptococcal infection and activation of human astrocytes. PLoS One. 2015;10(6):e0128431. doi: 10.1371/journal.pone.0128431.
  59. Lamy MC, Dramsi S, Billoet A, et al. Rapid detection of the “highly virulentˮ group B Streptococcus ST-17 clone. Microbes Infect. 2006;8(7):1714-1722. doi: 10.1016/j.micinf.2006.02.008.
  60. Santi I, Maione D, Galeotti CL, et al. BibA induces opsonizing antibodies conferring in vivo protection against group B Streptococcus. J Infect Dis. 2009;200(4):564-570. doi: 10.1086/603540.
  61. Tazi A, Disson O, Bellais S, et al. The surface protein HvgA mediates group B streptococcus hypervirulence and meningeal tropism in neonates. J Exp Med. 2010;207(11):2313-2322. doi: 10.1084/jem.20092594.
  62. Hayes K, Cotter L, Barry L, O’Halloran F. Emergence of the L phenotype in Group B Streptococci in the South of Ireland. Epidemiol Infect. 2017;145(16):3535-3542. doi: 10.1017/S0950268817002461.
  63. Khodaei F, Najafi M, Hasani A, et al. Pilus-encoding islets in S. agalactiae and its association with antibacterial resistance and serotype distribution. Microb Pathog. 2018;116:189-194. doi: 10.1016/j.micpath.2018.01.035.
  64. Гупалова Т.В, Леонтьева Г.Ф., Ермоленко Е.И., и др. Создание и опыт применения живой вакцины на основе штамма пробиотика Enterococcus faecium L3 для профилактики вагинальной инфекции, вызванной Streptococcus agalactiae // Медицинский академический журнал. - 2013. - Т. 13. - № 2. - С. 64-70. [Gupalova TV, Leontieva GF, Ermolenko EI, et al. Construction and testing of life vaccine based on the probiotic strain Enterococcus faecium L3 as means for prevention of vaginal infection caused by Streptococcus agalactiae. Medical academic journal. 2013;13(2):64-70. (In Russ.)]

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Polysaccharide repeat unit structures of the nine group B streptococcus serotypes (adapted from [24]). Arrows represent potential relationships between the units

Download (81KB)
3. Fig. 2. Comparison of genetic sequences of nine group B streptococcus serotypes (adapted from [24]). CpsA to -E and CpsL, as well as NeuB, -D, -A, and -C are conserved in all nine serotypes and are shown only in the type Ia capsule cluster. The color inside each arrow indicates the degree of similarity of the amino acid sequence between identical proteins of different strains

Download (75KB)

Copyright (c) 2018 Vasilyeva V.A., Shipitsyna E.V., Shalepo K.V., Savicheva A.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies