Трансгенез микроводоросли Chlamydomonas reinhardtii: актуальные подходы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Микроводоросли — богатый источник биологически активных веществ природного происхождения, которые находят применение в фармацевтическом, сельскохозяйственном, пищевом и промышленном производстве. Генетическая инженерия микроводорослей открывает большие возможности для создания штаммов-продуцентов различных пищевых добавок, коммерческих ферментов, а также белков терапевтического назначения — антител, гормонов и вакцин. Одноклеточная зеленая водоросль Chlamydomonas reinhardtii P.A. Dang. — модельный объект генетики фотосинтеза — оказалась удобной для разработки новых подходов в генетической инженерии микроводорослей. Преимущества C. reinhardtii состоят в возможности трансформации всех трех ее геномов (ядерного, митохондриального и хлоропластного), низкой стоимости и простоте культивирования, безопасности для человека и наличии системы посттрансляционной модификации белков, что делает этот организм потенциально интересной платформой для применения в биотехнологии. За последние несколько лет были достигнуты значительные успехи в трансгенезе C. reinhardtii, в том числе с применением новых методик редактирования генома. В этом обзоре мы представляем данные о современных достижениях в области модификации генома одноклеточной зеленой водоросли C. reinhardtii: принципы дизайна трансгенных конструкций, методики трансформации ядерного и хлоропластного геномов, используемые селективные маркеры и подходы к редактированию геномов с помощью системы CRISPR/Cas9.

Об авторах

Павел Алексеевич Виролайнен

Санкт-Петербургский государственный университет

Email: st085618@student.spbu.ru
ORCID iD: 0000-0001-5918-9395
SPIN-код: 6564-9350
Scopus Author ID: 57883811500

аспирант

Россия, 199034, Санкт-Петербург, Университетская наб., д. 7/9

Елена Михайловна Чекунова

Санкт-Петербургский государственный университет

Автор, ответственный за переписку.
Email: e.chekunova@spbu.ru
ORCID iD: 0000-0001-8942-4771
SPIN-код: 2788-6386
Scopus Author ID: 6701797455

доктор биологических наук, старший преподаватель кафедры генетики и биотехнологии

Россия, 199034, Санкт-Петербург, Университетская наб., д. 7/9

Список литературы

  1. Blaby-Haas C.E., Merchant S.S. Comparative and functional algal genomics // Annu Rev Plant Biol. 2019. Vol. 70. P. 605–638. doi: 10.1146/annurev-arplant-050718-095841
  2. Field C.B., Behrenfeld M.J., Randerson J.T., Falkowski P. Primary production of the biosphere: Integrating terrestrial and oceanic components // Science. 1998. Vol. 281, N. 5374. P. 237–240. doi: 10.1126/science.281.5374.237
  3. Lu Y., Zhang X., Gu X., et al. Engineering microalgae: transition from empirical design to programmable cells // Crit Rev Biotechnol. 2021. Vol. 41, N. 8. P. 1233–1256. doi: 10.1080/07388551.2021.1917507
  4. Siddiqui A., Wei Z., Boehm M., Ahmad N. Engineering microalgae through chloroplast transformation to produce high-value industrial products // Biotechnol Appl Biochem. 2019. Vol. 67, N. 1. P. 30–40. doi: 10.1002/bab.1823
  5. www.fda.gov. [Электронный ресурс]. US FDA [дата обращения: 01.11.2023]. Режим доступа: https://www.fda.gov/
  6. Jeon S., Lim J.-M., Lee H.-G., et al. Current status and perspectives of genome editing technology for microalgae // Biotechnol Biofuels. 2017. Vol. 10. ID 267. doi: 10.1186/s13068-017-0957-z
  7. Patel V.K., Das A., Kumari R., Kajla S. Recent progress and challenges in CRISPR-Cas9 engineered algae and cyanobacteria // Algal Res. 2023. Vol. 71. ID 103068. doi: 10.1016/j.algal.2023.103068
  8. Merchant S.S., Prochnik S.E., Vallon O., et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions // Science. 2007. Vol. 318, N. 5848. P. 245–250. doi: 10.1126/science.1143609
  9. Gallaher S.D., Fitz-Gibbon S.T., Strenkert D., et al. High-throughput sequencing of the chloroplast and mitochondrion of Chlamydomonas reinhardtii to generate improved de novo assemblies, analyze expression patterns and transcript speciation, and evaluate diversity among laboratory strains and wild isolates // Plant J. 2018. Vol. 93, N. 3. P. 545–565. doi: 10.1111/tpj.13788
  10. Weeks D.P. Genetic transformation of Chlamydomonas nuclear, chloroplast, and mitochondrial genomes. В кн.: Goodenough U., editor. The Chlamydomonas sourcebook. Academic Press, 2023. P. 325–343. doi: 10.1016/B978-0-12-822457-1.00018-2
  11. Esland L., Larrea-Alvarez M., Purton S. Selectable markers and reporter genes for engineering the chloroplast of Chlamydomonas reinhardtii // Biology (Basel). 2018. Vol. 7, N. 4. ID 46. doi: 10.3390/biology7040046
  12. Sun M., Qian K., Su N., et al. Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast // Biotechnol Lett. 2003. Vol. 25, N. 13. P. 1087–1092. doi: 10.1023/a:1024140114505
  13. He D.-M., Qian K.-X., Shen G.-F., et al. Recombination and expression of classical swine fever virus (CSFV) structural protein E2 gene in Chlamydomonas reinhardtii chroloplasts // Colloids Surf B Biointerfaces. 2007. Vol. 55, N. 1. P. 26–30. doi: 10.1016/j.colsurfb.2006.10.042
  14. Siripornadulsil S., Dabrowski K., Sayre R. Microalgal vaccines. В кн.: León R., Galván A., Fernández E., editors. Transgenic microalgae as green cell factories. Advances in experimental medicine and biology. New York: Springer, 2007. Vol. 616. P. 122–128. doi: 10.1007/978-0-387-75532-8_11
  15. Surzycki R., Greenham K., Kitayama K., et al. Factors effecting expression of vaccines in microalgae // Biologicals. 2009. Vol. 37, N. 3. P. 133–138. doi: 10.1016/j.biologicals.2009.02.005
  16. Dreesen I.A.J., Charpin-El Hamri G., Fussenegger M. Heat-stable oral alga-based vaccine protects mice from Staphylococcus aureus infection // J Biotechnol. 2010. Vol. 145, N. 3. P. 273–280. doi: 10.1016/j.jbiotec.2009.12.006
  17. Michelet L., Lefebvre-Legendre L., Burr S.E., et al. Enhanced chloroplast transgene expression in a nuclear mutant of Chlamydomonas // Plant Biotechnol J. 2011. Vol. 9, N. 5. P. 565–574. doi: 10.1111/j.1467-7652.2010.00564.x
  18. Gregory J.A., Li F., Tomosada L.M., et al. Algae-produced Pfs25 elicits antibodies that inhibit malaria transmission // PLoS One. 2012. Vol. 7, N. 5. ID 37179. doi: 10.1371/journal.pone.0037179
  19. Gregory J.A., Topol A.B., Doerner D.Z., Mayfield S. Alga-produced cholera toxin-Pfs25 fusion proteins as oral vaccines // Appl Environ Microbiol. 2013. Vol. 79, N. 13. P. 3917–3925. doi: 10.1128/AEM.00714-13
  20. Jones C.S., Luong T., Hannon M., et al. Heterologous expression of the C-terminal antigenic domain of the malaria vaccine candidate Pfs48/45 in the green algae Chlamydomonas reinhardtii // Appl Microbiol Biotechnol. 2013. Vol. 97, N. 5. P. 1987–1995. doi: 10.1007/s00253-012-4071-7
  21. Shamriz S., Ofoghi H. Expression of recombinant PfCelTOS antigen in the chloroplast of Chlamydomonas reinhardtii and its potential use in detection of malaria // Mol Biotechnol. 2019. Vol. 61, N. 2. P. 102–110. doi: 10.1007/s12033-018-0140-1
  22. Demurtas O.C., Massa S., Ferrante P., et al. A Chlamydomonas-derived human papillomavirus 16 E7 vaccine induces specific tumor protection // PLoS One. 2013. Vol. 8, N. 4. ID 61473. doi: 10.1371/journal.pone.0061473
  23. Vlasák J., Bøíza J., Ryba Š., Ludvíková V. Alga-based HPV16 E7 vaccine elicits specific immune response in mice // Asian J Plant Sci Res. 2013. Vol. 3. P. 141–148.
  24. Bertalan I., Munder M.C., Weiß C., et al. A rapid, modular and marker-free chloroplast expression system for the green alga Chlamydomonas reinhardtii // J Biotechnol. 2015. Vol. 195. P. 60–66. doi: 10.1016/j.jbiotec.2014.12.017
  25. Castellanos-Huerta I., Bañuelos-Hernandez B., Tellez G., et al. Recombinant hemagglutinin of avian influenza virus H5 expressed in the chloroplast of Chlamydomonas reinhardtii and evaluation of its immunogenicity in chickens // Avian Dis. 2016. Vol. 60, N. 4. P. 784–791. doi: 10.1637/11427-042816-Reg
  26. Beltran-López J.I., Romero-Maldonado A., Monreal-Escalante E., et al. Chlamydomonas reinhardtii chloroplasts express an orally immunogenic protein targeting the p210 epitope implicated in atherosclerosis immunotherapies // Plant Cell Rep. 2016. Vol. 35, N. 5. P. 1133–1141. doi: 10.1007/s00299-016-1946-6
  27. Berndt A.J., Smalley T.N., Ren B., et al. Recombinant production of a functional SARS-CoV-2 spike receptor binding domain in the green algae Chlamydomonas reinhardtii // PLoS One. 2021. Vol. 16, N. 11. ID 257089. doi: 10.1371/journal.pone.0257089
  28. Rasala B.A., Muto M., Lee P.A., et al. Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii // Plant Biotechnol J. 2010. Vol. 8, N. 6. P. 719–733. doi: 10.1111/j.1467-7652.2010.00503.x
  29. Zhao Y., Shi X., Zhang Z. High-frequency electroporation and expression of human interleukin 4 gene in Chlamydomonas reinhardtii chloroplast // Journal of Huazhong Agricultural University. 2006. Vol. 25, N. 2. P. 110–116.
  30. Yang Z., Li Y., Chen F., et al. Expression of human soluble TRAIL in Chlamydomonas reinhardtii chloroplast // Chin Sci Bull. 2006. Vol. 51. P. 1703–1709. doi: 10.1007/s11434-006-2041-0
  31. Mayfield S.P., Franklin S.E., Lerner R.A. Expression and assembly of a fully active antibody in algae // PNAS USA. 2003. Vol. 100, N. 2. P. 438–442. doi: 10.1073/pnas.0237108100
  32. Tran M., Zhou B., Pettersson P.L., et al. Synthesis and assembly of a full-length human monoclonal antibody in algal chloroplasts // Biotechnol Bioeng. 2009. Vol. 104, N. 4. P. 663–673. doi: 10.1002/bit.22446
  33. Barrera D.J., Rosenberg J.N., Chiu J.G., et al. Algal chloroplast produced camelid VH H antitoxins are capable of neutralizing botulinum neurotoxin // Plant Biotechnol J. 2015. Vol. 13, N. 1. P. 117–124. doi: 10.1111/pbi.12244
  34. Wang X., Brandsma M., Tremblay R., et al. A novel expression platform for the production of diabetes-associated autoantigen human glutamic acid decarboxylase (hGAD65) // BMC Biotechnol. 2008. Vol. 8. ID 87. doi: 10.1186/1472-6750-8-87
  35. Tran M., Van C., Barrera D.J., et al. Production of unique immunotoxin cancer therapeutics in algal chloroplasts // PNAS USA. 2013. Vol. 110, N. 1. P. 15–22. doi: 10.1073/pnas.1214638110
  36. Wannathong T., Waterhouse J.C., Young R.E.B., et al. New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii // Appl Microbiol Biotechnol. 2016. Vol. 100, N. 12. P. 5467–5477. doi: 10.1007/s00253-016-7354-6
  37. Stoffels L., Taunt H.N., Charalambous B., Purton S. Synthesis of bacteriophage lytic proteins against Streptococcus pneumoniae in the chloroplast of Chlamydomonas reinhardtii // Plant Biotechnol J. 2017. Vol. 15, N. 9. P. 1130–1140. doi: 10.1111/pbi.12703
  38. Akram M., Khan M.A., Ahmed N., et al. Cloning and expression of an anti-cancerous cytokine: human IL-29 gene in Chlamydomonas reinhardtii // AMB Expr. 2023. Vol. 13, N. 1. ID 23. doi: 10.1186/s13568-023-01530-1
  39. Gregory J.A., Shepley-Mctaggart A., Umpierrez M., et al. Immunotherapy using algal-produced Ara h 1 core domain suppresses peanut allergy in mice // Plant Biotechnol J. 2016. Vol. 14, N. 7. P. 1541–1550. doi: 10.1111/pbi.12515
  40. Hirschl S., Ralser C., Asam C., et al. Expression and characterization of functional recombinant Bet v 1.0101 in the chloroplast of Chlamydomonas reinhardtii // Int Arch Allergy Immunol. 2017. Vol. 173, N. 1. P. 44–50. doi: 10.1159/000471852
  41. Schroda M. Good news for nuclear transgene expression in Chlamydomonas // Cells. 2019. Vol. 8, N. 12. ID 1534. doi: 10.3390/cells8121534
  42. Schroda M., Remacle C. Molecular advancements establishing Chlamydomonas as a host for biotechnological exploitation // Front Plant Sci. 2022. Vol. 13. ID 911483. doi: 10.3389/fpls.2022.911483
  43. Berthold P., Schmitt R., Mages W. An engineered Streptomyces hygroscopicus aph7'' gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii // Protist. 2002. Vol. 153, N. 4. P. 401–412. doi: 10.1078/14344610260450136
  44. Lumbreras V., Stevens D.R., Purton S. Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron: foreign gene expression in Chlamydomonas // Plant J. 1998. Vol. 14, N. 4. P. 441–447. doi: 10.1046/j.1365-313X.1998.00145.x
  45. Baier T., Wichmann J., Kruse O., Lauersen K.J. Intron-containing algal transgenes mediate efficient recombinant gene expression in the green microalga Chlamydomonas reinhardtii // Nucleic Acids Res. 2018. Vol. 46, N. 13. P. 6909–6919. doi: 10.1093/nar/gky532
  46. Baier T., Jacobebbinghaus N., Einhaus A., et al. Introns mediate post-transcriptional enhancement of nuclear gene expression in the green microalga Chlamydomonas reinhardtii // PLoS Genet. 2020. Vol. 16, N. 7. ID 1008944. doi: 10.1371/journal.pgen.1008944
  47. Picariello T., Hou Y., Kubo T., et al. TIM, a targeted insertional mutagenesis method utilizing CRISPR/Cas9 in Chlamydomonas reinhardtii // PLoS One. 2020. Vol. 15, N. 5. ID 232594. doi: 10.1371/journal.pone.0232594
  48. Kasai Y., Harayama S. Construction of marker-free transgenic strains of Chlamydomonas reinhardtii using a Cre/loxP-mediated recombinase system // PLoS One. 2016. Vol. 11, N. 8. ID 161733. doi: 10.1371/journal.pone.0161733
  49. Fischer N., Stampacchia O., Redding K., Rochaix J.-D. Selectable marker recycling in the chloroplast // Mol Gen Genet. 1996. Vol. 251, N. 3. P. 373–380. doi: 10.1007/BF02172529
  50. Purton S., Rochaix J.-D. Characterization of the ARG7 gene of Chlamydomonas reinhardtii and its application to nuclear transformation // Eur J Phycol. 1995. Vol. 30, N. 2. P. 141–148. doi: 10.1080/09670269500650901
  51. Kindle K.L., Schnell R.A., Fernández E., Lefebvre P.A. Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase // J Cell Biol. 1989. Vol. 109, N. 6. P. 2589–2601. doi: 10.1083/jcb.109.6.2589
  52. Nelson J.A.E., Savereide P.B., Lefebvre P.A. The CRY1 gene in Chlamydomona reinhardtii: structure and use as a dominant selectable marker for nuclear transformation // Mol Cell Biol. 1994. Vol. 14, N. 6. P. 4011–4019. doi: 10.1128/mcb.14.6.4011-4019.1994
  53. Sizova I., Fuhrmann M., Hegemann P. A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii // Gene. 2001. Vol. 277, N. 1. P. 221–229. doi: 10.1016/s0378-1119(01)00616-3
  54. Stevens D.R., Rochaix J.-D., Purton S. The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas // Mol Gen Genet. 1996. Vol. 251, N. 1. P. 23–30. doi: 10.1007/BF02174340
  55. Goldschmidt-Clermont M. Transgenic expression of aminoglycoside adenine transferase in the chloroplast: A selectable marker of site-directed transformation of Chlamydomonas // Nucleic Acids Res. 1991. Vol. 19, N. 15. P. 4083–4089. doi: 10.1093/nar/19.15.4083
  56. Cerutti H., Johnson A.M., Gillham N.W., Boynton J.E. A eubacterial gene conferring spectinomycin resistance on Chlamydomonas reinhardtii: Integration into the nuclear genome and gene expression // Genetics. 1997. Vol. 145, N. 1. P. 97–110. doi: 10.1093/genetics/145.1.97
  57. Bateman J., Purton S. Tools for chloroplast transformation in Chlamydomonas: expression vectors and a new dominant selectable marker // Mol Gen Genet. 2000. Vol. 263, N. 3. P. 404–410. doi: 10.1007/s004380051184
  58. Larrea-Alvarez M., Young R., Purton S. A simple technology for generating marker-free chloroplast transformants of the green alga Chlamydomonas reinhardtii. В кн.: Maliga P., editor. Chloroplast Biotechnology. New York: Humana, 2021. P. 293–304. doi: 10.1007/978-1-0716-1472-3_17
  59. Taunt H.N., Jackson H.O., Gunnarsson Í.N., et al. Accelerating chloroplast engineering: a new system for rapid generation of marker-free transplastomic lines of Chlamydomonas reinhardtii // Microorganisms. 2023. Vol. 11, N. 8. ID 1967. doi: 10.3390/microorganisms11081967
  60. Greiner A., Kelterborn S., Evers H., et al. Targeting of photoreceptor genes in Chlamydomonas reinhardtii via zinc-finger nucleases and CRISPR/Cas9 // Plant Cell. 2017. Vol. 29, N. 10. P. 2498–2518. doi: 10.1105/tpc.17.00659
  61. Crozet P., Navarro F.J., Willmund F., et al. Birth of a photosynthetic chassis: a MoClo toolkit enabling synthetic biology in the microalga Chlamydomonas reinhardtii // ACS Synth Biol. 2018. Vol. 7, N. 9. P. 2074–2086. doi: 10.1021/acssynbio.8b00251
  62. Kindle K.L. High-frequency nuclear transformation of Chlamydomonas reinhardtii // PNAS USA. 1990. Vol. 87, N. 3. P. 1228–1232. doi: 10.1073/pnas.87.3.1228
  63. Kindle K.L., Richards K.L., Stern D.B. Engineering the chloroplast genome: Techniques and capabilities for chloroplast transformation in Chlamydomonas reinhardtii // PNAS USA. 1991. Vol. 88, N. 5. P. 1721–1725. doi: 10.1073/pnas.88.5.1721
  64. Brown L.E., Sprecher S.L., Keller L.R. Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation // Mol Cell Biol. 1991. Vol. 11, N. 4. P. 2328–2332. doi: 10.1128/mcb.11.4.2328-2332.1991
  65. Park R.V., Asbury H., Miller S.M. Modification of a Chlamydomonas reinhardtii CRISPR/Cas9 transformation protocol for use with widely available electroporation equipment // MethodsX. 2020. Vol. 7. ID 100855. doi: 10.1016/j.mex.2020.100855
  66. Wang L., Yang L., Wen X., et al. Rapid and high efficiency transformation of Chlamydomonas reinhardtii by square-wave electroporation // Biosci Rep. 2019. Vol. 39, N. 1. ID BSR20181210. doi: 10.1042/BSR20181210
  67. Yamano T., Iguchi H., Fukuzawa H. Rapid transformation of Chlamydomonas reinhardtii without cell-wall removal // J Biosci Bioeng. 2013. Vol. 115, N. 6. P. 691–694. doi: 10.1016/j.jbiosc.2012.12.020
  68. Shimogawara K., Fujiwara S., Grossman A., Usuda H. High-efficiency transformation of Chlamydomonas reinhardtii by electroporation // Genetics. 1998. Vol. 148, N. 4. P. 1821–1828. doi: 10.1093/genetics/148.4.1821
  69. Mini P., Demurtas O.C., Valentini S., et al. Agrobacterium-mediated and electroporation-mediated transformation of Chlamydomonas reinhardtii: A comparative study // BMC Biotechnol. 2018. Vol. 18, N. 1. ID 11. doi: 10.1186/s12896-018-0416-3
  70. Kang S., Jeon S., Kim S., et al. Development of a pVEC peptide-based ribonucleoprotein (RNP) delivery system for genome editing using CRISPR/Cas9 in Chlamydomonas reinhardtii // Sci Rep. 2020. Vol. 10, N. 1. ID 22158. doi: 10.1038/s41598-020-78968-x
  71. Jinek M., Chylinski K., Fonfara I., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity // Science. 2012. Vol. 337, N. 6096. P. 816–821. doi: 10.1126/science.1225829
  72. Ghribi M., Nouemssi S.B., Meddeb-Mouelhi F., Desgagné-Penix I. Genome editing by CRISPR-Cas: a game change in the genetic manipulation of Chlamydomonas // Life (Basel). 2020. Vol. 10, N. 11. ID 25. doi: 10.3390/life10110295
  73. Jiang W., Brueggeman A.J., Horken K.M., et al. Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii // Eukaryot Cell. 2014. Vol. 13, N. 11. P. 1465–1469. doi: 10.1128/EC.00213-14
  74. Guzmán-Zapata D., Sandoval-Vargas J., Macedo-Osorio K., et al. Efficient editing of the nuclear APT reporter gene in Chlamydomonas reinhardtii via expression of a CRISPR-Cas9 module // Int J Mol Sci. 2019. Vol. 20, N. 5. ID 1247. doi: 10.3390/ijms20051247
  75. Karas B.J., Diner R.E., Lefebvre S.C., et al. Designer diatom episomes delivered by bacterial conjugation // Nat Commun. 2015. Vol. 6. ID 6925. doi: 10.1038/ncomms7925
  76. Diner R.E., Bielinski V.A., Dupont C.L., et al. Refinement of the diatom episome maintenance sequence and improvement of conjugation-based DNA delivery methods // Front Bioeng Biotechnol. 2016. Vol. 4. ID 65. doi: 10.3389/fbioe.2016.00065
  77. Muñoz C.F., Sturme M.H.J., D’Adamo S., et al. Stable transformation of the green algae Acutodesmus obliquus and Neochloris oleoabundans based on E. coli conjugation // Algal Res. 2019. Vol. 39. ID 101453. doi: 10.1016/j.algal.2019.101453
  78. Poliner E., Takeuchi T., Du Z.-Y., et al. Nontransgenic marker-free gene disruption by an episomal CRISPR system in the oleaginous microalga, Nannochloropsis oceanica CCMP1779 // ACS Synth Biol. 2018. Vol. 7, N. 4. P. 962–968. doi: 10.1021/acssynbio.7b00362
  79. Baidukova O., Kelterborn S., Sizova I., Hegemann P. Reverse genetics. В кн.: Goodenough U., editor. The Chlamydomonas sourcebook. 3rd edit. Vol. 1: Introduction to Chlamydomonas and its laboratory use. Academic Press, 2023. P. 421–430. doi: 10.1016/B978-0-12-822457-1.00011-X
  80. Nievergelt A.P., Diener D.R., Bogdanova A., et al. Efficient precision editing of endogenous Chlamydomonas reinhardtii genes with CRISPR-Cas // Cell Rep Methods. 2023. Vol. 3, N. 8. ID 100562. doi: 10.1016/j.crmeth.2023.100562
  81. Zadabbas Shahabadi H., Akbarzadeh A., Ofoghi H., Kadkhodaei S. Site-specific gene knock-in and bacterial phytase gene expression in Chlamydomonas reinhardtii via Cas9 RNP-mediated HDR // Front Plant Sci. 2023. Vol. 14. ID 1150436. doi: 10.3389/fpls.2023.1150436
  82. Jayshree A., Jayashree S., Thangaraju N. Chlorella vulgaris and Chlamydomonas reinhardtii: effective antioxidant, antibacterial and anticancer mediators // Indian J Pharm Sci. 2016. Vol. 78. P. 575–581. doi: 10.4172/pharmaceutical-sciences.1000155
  83. Chen K., Wang Y., Zhang R., et al. CRISPR/Cas genome editing and precision plant breeding in agriculture // Annu Rev Plant Biol. 2019. Vol. 70. P. 667–697. doi: 10.1146/annurev-arplant-050718-100049
  84. Salomé P.A., Merchant S.S. A series of fortunate events: introducing Chlamydomonas as a reference organism // Plant Cell. 2019. Vol. 31, N. 8. P. 1682–1707. doi: 10.1105/tpc.18.00952

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Общий план строения трансгенных конструкций для трансформации ядерного и хлоропластного генома C. reinhardtii: a — конструкция для трансформации ядерного генома; b — конструкция для трансформации хлоропластного генома. ПГ — плечи гомологии; П — промотор/5'-нетранслируемая область; И — интрон; Т — терминатор/3'-нетранслируемая область; ПП — прямые повторы. Дополнительные пояснения к рисунку приведены в тексте

Скачать (103KB)
3. Рис. 2. Стратегии доставки компонентов системы CRISPR/Cas9 в клетки C. reinhardtii: a — интегративная система; b — эписомная система; c — рибонуклеопротеиновая система. Дополнительные пояснения к рисунку приведены в тексте

Скачать (104KB)

© Эко-Вектор, 2024


 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах