Природно-трансгенные растения, как модель для изучения отсроченных экологических рисков возделывания ГМО


Цитировать

Полный текст

Аннотация

Развитие генной инженерии ставит вопрос о биобезопасности трансгенных организмов. Наибольшие опасения, связанные с негативными последствиями возделывания ГМО, сводятся к возможной утечке трансгенов за счет переопыления нетрансгенных близкородственных форм трансгенной пыльцой. Природно-трансгенные растения представляют собой виды, которые были подвергнуты агробактериальной трансформации и сохранили Т-ДНК-подобные последовательности в своих геномах. Эти виды могут быть рассмотрены как модели для изучения отсроченных экологических рисков, связанных с утечкой трансгенов. Данному вопросу посвящен представленный обзор.

Об авторах

Татьяна Валерьевна Матвеева

СПбГУ

Email: radishlet@gmail.com
профессор, кафедра генетики и биотехнологии

Список литературы

  1. Губанов И. А., Киселева К.В, Новиков В. С., Тихомиров В. Н. (2003, 2004) Иллюстрированный определитель растений средней полосы Росссии. Москва. Т. 2, 3.
  2. Хафизова Г. В., Матвеева Т. В. (2014) Изучение сайтов интеграции клеточной Т-ДНК у представителей различных секций рода Nicotiana. Молодежный научный форум: естественные и медицинские науки. Электронный сборник статей по материалам ХV-ХVI студенческой международной заочной научно-практической конференции. - Москва: Изд. «МЦНО». 8-9 (15). URL: http://www.nauchforum.ru/archive/MNF_nature/8-9 (15).pdf.
  3. Beckie H. J., Warwick S. I., Nair H., Seguin-Swartz G. (2003) Gene flow in commercial fields of herbicide-resistant canola (Brassica napus) // Ecological applications. 13 (5): 1276-1294.
  4. Bing D. J., Downey R. K., Rakow G. F. W. (1996) Hybridizations among Brassica napus, B. rapa and B. juncea and their two weedy relatives B. nigra and Sinapis arvensis under open pollination conditions in the field. Plant Breeding. V. 115 (6): P. 470-473.
  5. Brigulla M., Wackernagel W. (2010) Molecular aspects of gene transfer and foreign DNA acquisition in prokaryotes with regard to safety issues. Appl Microbiol Biotechnol. V. 86 (4): P. 1027-41.
  6. Chen K., Dorlhac de Borne F., Szegedi E., Otten L. (2014) Deep sequencing of the ancestral tobacco species Nicotiana tomentosiformis reveals multiple T-DNA inserts and a complex evolutionary history of natural transformation in the genus Nicotiana. Plant J. V. 80 (4): P. 669-682
  7. Chevre A. M. Eber F., Baranger A. Kerlan M. C. Barret P. Vallée P., Renard M. (1994). Interspecific gene flow as a component of risk assessment for transgenic Brassicas. ISHS Brassica Symposium-IX Crucifer Genetics Workshop. V. 407: P. 169-180.
  8. Chevre A. M., Eber F., Darmency H., Fleury A., Picault H., Letanneur J. C. (2000) Assessment of interspecific hybridization between transgenic oilseed rape and wild radish under normal agronomic conditions. Theoretical and Applied Genetics. V. 100 (8): P. 1233-1239.
  9. Clarkson J. J., Knapp S., Garcia V. F., Olmstead R. G., Leitch A. R. and Chase M. W. (2004) Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions. Mol. Phylogenet. Evol. V. 33: P. 75-90.
  10. De Block M., Herrera-Estrella L., Van Montagu M., Schell, J. And Zambryski, P. (1984) Expression of foreign genes in regenerated plants and their progeny. EMBO J. V. 3: P. 1681-1689.
  11. Dunfield K. E., Germida J. J. (2004). Impact of genetically modified crops on soil and plant-associated microbial communities. J. Environ. Qual. V. 33: P. 806-815.
  12. EFSA GMO Panel Working Group on Animal Feeding Trials. (2008) Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. Food Chem Toxicol. Suppl 1. S2-70.
  13. Fernandez-Mazuecos M., and Vargas P. (2011). Historical Isolation versus Recent Long-Distance Connections between Europe and Africa in Bifid Toadflaxes (Linaria sect. Versicolores). Plos One. V. 6: P. e22234.
  14. Fründt C., Meyer A. D., Ichikawa T., Meins F. (1998a) A tobacco homologue of the Ri-plasmid orf13 gene causes cell proliferation in carrot root discs. Mol. Gen. Genet. V. 259: P. 559-568.
  15. Furner, I. J., Huffman, G. A., Amasino, R. M., Garfinkel, D. J., Gordon, M. P. and Nester, E. W. (1986) An Agrobacterium transformation in the evolution of the genus Nicotiana. Nature. V. 319: P. 422-427.
  16. Giovannetti M. 2003. The ecological risks of transgenic plants. Riv. Biol. V. 96, (2): P. 207-223.
  17. Goodspeed T. H. (1954) The genus Nicotiana. Chron. Bot. V. 16: P. 102-135.
  18. Herrera-Estrella L, Depicker A, Van Montagu M, Schell J. (1983) Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature. V. 1303: P. 209-213.
  19. Hsu K. J., Montadert L., Bernoulli D., Cita M. B., Erickson A. (1977). History of the Mediterranean salinity crisis. Nature. V. 267: P. 399-403.
  20. Intrieri, M. C. and Buiatti, M. (2001) The horizontal transfer of Agrobacterium rhizogenes genes and the evolution of the genus Nicotiana. Mol. Phylogenet. Evol. V. 20: P. 100-110.
  21. ISAAA Brief 44-2012: Slides & Tables (http: // isaaa.org/resources/publications/briefs/44/pptslides/default.asp). Дата обращения 1.05.2015.
  22. Knapp, S., Chase, M. W. and Clarkson, J. J. (2004) Nomenclatural changes and a new sectional classification in Nicotiana (Solanaceae). Taxon. V. 53: P. 73-82.
  23. Kyndt T., Quispe D., Zhai H., Jarret R., Ghislain M., Liu Q., Gheysen G., Kreuze J. F. (2015) The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An example of a naturally transgenic food crop PNAS (112). P. 5844-5849.
  24. Matveeva T. V., Bogomaz D. I., Pavlova O. A., Nester E. W., Lutova L. A. (2012) Horizontal gene transfer from genus Agrobacterium to the plant Linaria in nature. Mol. Plant-Microbe Interact. V. 25: P. 1542-1551.
  25. Matveeva T. V., Lutova L. A. (2014) Horizontal gene transfer from Agrobacterium to plants. Frontiers in Plant Science. V. 5: P. 326.
  26. Meyer A. D., Ichikawa T., Meins F. (1995) Horizontal gene transfer: regulated expression of a tobacco homologue of the Agrobacterium rhizogenes rolC gene. Mol. Gen. Genet. V. 249: P. 265-273.
  27. Mohajjel-Shoja H., Clément B., Perot J., Alioua M., Otten L. (2011) Biological activity of the Agrobacterium rhizogenes-derived trolC gene of Nicotiana tabacum and its functional relation to other plast genes. Mol. Plant-Microbe Interact. V. 24: P. 44-53.
  28. Sutton D. A. (1988). A revision of the tribe Antirrhineae. London. UK: Oxford University Press.
  29. Suzuki K., Yamashita I., Tanaka N. (2002) Tobacco plants were transformed by Agrobacterium rhizogenes infection during their evolution. Plant J. V. 32: P. 775-787.
  30. UNEP (2006). Soil Biodiversity Key to Environmentally Friendly Agriculture. UNEP Press Release. 22.03.2006. Available at ttp: // www.unep.org/Documents.Multilingual/Default.asp?DocumentID=471&ArticleID=5236&l=en. Дата обращения 10.05.2015.
  31. Warwick S. I., Lеgуre A., Simard M. J., James T. (2008) Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population. Mol Ecol. V. 17: P. 1387-1395.
  32. Warwick S. I., Simard M.-J., Legere A., Beckie H. J., Braun L., Zhu B., Mason P., Seguin-Swartz G., Stewart C. N. Jr (2003) Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O. E. Schulz // Theoretical and Applied Genetics. V. 107: P. 528-539.
  33. White F., Garfinkel D., Huffman G. A., Gordon M., Nester E. W. (1983) Sequences homologous to Agrobacterium rhizogenes T-DNA in the genomes of uninfected plants. Nature. V. 301: P. 348-350.

© Матвеева Т.В., 2015

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.
 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах