Naturally transgenic plants as a model for the study of delayed environmental risks of cultivation of GMOs


Cite item

Full Text

Abstract

The development of genetic engineering raises the question of biosafety of transgenic organisms. The greatest concerns about the negative effects of GMO cultivation are reduced to possible leakage of transgenes through cross-pollination of non-transgenic closely related forms by transgenic pollen. Naturally transgenic plants are species which have been subjected to Agrobacterium-mediated transformation and retained the T-DNA-like sequence in their genomes. These species can be considered as a model for the study of delayed environmental risks associated with leakage of transgenes. The review is devoted to this problem.

About the authors

Tat’yana Valer’yevna Matveeva

St. Petersburg State University

Email: radishlet@gmail.com
Professor, Dept. Of Genetics and Biotechnology

References

  1. Губанов И. А., Киселева К.В, Новиков В. С., Тихомиров В. Н. (2003, 2004) Иллюстрированный определитель растений средней полосы Росссии. Москва. Т. 2, 3.
  2. Хафизова Г. В., Матвеева Т. В. (2014) Изучение сайтов интеграции клеточной Т-ДНК у представителей различных секций рода Nicotiana. Молодежный научный форум: естественные и медицинские науки. Электронный сборник статей по материалам ХV-ХVI студенческой международной заочной научно-практической конференции. - Москва: Изд. «МЦНО». 8-9 (15). URL: http://www.nauchforum.ru/archive/MNF_nature/8-9 (15).pdf.
  3. Beckie H. J., Warwick S. I., Nair H., Seguin-Swartz G. (2003) Gene flow in commercial fields of herbicide-resistant canola (Brassica napus) // Ecological applications. 13 (5): 1276-1294.
  4. Bing D. J., Downey R. K., Rakow G. F. W. (1996) Hybridizations among Brassica napus, B. rapa and B. juncea and their two weedy relatives B. nigra and Sinapis arvensis under open pollination conditions in the field. Plant Breeding. V. 115 (6): P. 470-473.
  5. Brigulla M., Wackernagel W. (2010) Molecular aspects of gene transfer and foreign DNA acquisition in prokaryotes with regard to safety issues. Appl Microbiol Biotechnol. V. 86 (4): P. 1027-41.
  6. Chen K., Dorlhac de Borne F., Szegedi E., Otten L. (2014) Deep sequencing of the ancestral tobacco species Nicotiana tomentosiformis reveals multiple T-DNA inserts and a complex evolutionary history of natural transformation in the genus Nicotiana. Plant J. V. 80 (4): P. 669-682
  7. Chevre A. M. Eber F., Baranger A. Kerlan M. C. Barret P. Vallée P., Renard M. (1994). Interspecific gene flow as a component of risk assessment for transgenic Brassicas. ISHS Brassica Symposium-IX Crucifer Genetics Workshop. V. 407: P. 169-180.
  8. Chevre A. M., Eber F., Darmency H., Fleury A., Picault H., Letanneur J. C. (2000) Assessment of interspecific hybridization between transgenic oilseed rape and wild radish under normal agronomic conditions. Theoretical and Applied Genetics. V. 100 (8): P. 1233-1239.
  9. Clarkson J. J., Knapp S., Garcia V. F., Olmstead R. G., Leitch A. R. and Chase M. W. (2004) Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions. Mol. Phylogenet. Evol. V. 33: P. 75-90.
  10. De Block M., Herrera-Estrella L., Van Montagu M., Schell, J. And Zambryski, P. (1984) Expression of foreign genes in regenerated plants and their progeny. EMBO J. V. 3: P. 1681-1689.
  11. Dunfield K. E., Germida J. J. (2004). Impact of genetically modified crops on soil and plant-associated microbial communities. J. Environ. Qual. V. 33: P. 806-815.
  12. EFSA GMO Panel Working Group on Animal Feeding Trials. (2008) Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. Food Chem Toxicol. Suppl 1. S2-70.
  13. Fernandez-Mazuecos M., and Vargas P. (2011). Historical Isolation versus Recent Long-Distance Connections between Europe and Africa in Bifid Toadflaxes (Linaria sect. Versicolores). Plos One. V. 6: P. e22234.
  14. Fründt C., Meyer A. D., Ichikawa T., Meins F. (1998a) A tobacco homologue of the Ri-plasmid orf13 gene causes cell proliferation in carrot root discs. Mol. Gen. Genet. V. 259: P. 559-568.
  15. Furner, I. J., Huffman, G. A., Amasino, R. M., Garfinkel, D. J., Gordon, M. P. and Nester, E. W. (1986) An Agrobacterium transformation in the evolution of the genus Nicotiana. Nature. V. 319: P. 422-427.
  16. Giovannetti M. 2003. The ecological risks of transgenic plants. Riv. Biol. V. 96, (2): P. 207-223.
  17. Goodspeed T. H. (1954) The genus Nicotiana. Chron. Bot. V. 16: P. 102-135.
  18. Herrera-Estrella L, Depicker A, Van Montagu M, Schell J. (1983) Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature. V. 1303: P. 209-213.
  19. Hsu K. J., Montadert L., Bernoulli D., Cita M. B., Erickson A. (1977). History of the Mediterranean salinity crisis. Nature. V. 267: P. 399-403.
  20. Intrieri, M. C. and Buiatti, M. (2001) The horizontal transfer of Agrobacterium rhizogenes genes and the evolution of the genus Nicotiana. Mol. Phylogenet. Evol. V. 20: P. 100-110.
  21. ISAAA Brief 44-2012: Slides & Tables (http: // isaaa.org/resources/publications/briefs/44/pptslides/default.asp). Дата обращения 1.05.2015.
  22. Knapp, S., Chase, M. W. and Clarkson, J. J. (2004) Nomenclatural changes and a new sectional classification in Nicotiana (Solanaceae). Taxon. V. 53: P. 73-82.
  23. Kyndt T., Quispe D., Zhai H., Jarret R., Ghislain M., Liu Q., Gheysen G., Kreuze J. F. (2015) The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An example of a naturally transgenic food crop PNAS (112). P. 5844-5849.
  24. Matveeva T. V., Bogomaz D. I., Pavlova O. A., Nester E. W., Lutova L. A. (2012) Horizontal gene transfer from genus Agrobacterium to the plant Linaria in nature. Mol. Plant-Microbe Interact. V. 25: P. 1542-1551.
  25. Matveeva T. V., Lutova L. A. (2014) Horizontal gene transfer from Agrobacterium to plants. Frontiers in Plant Science. V. 5: P. 326.
  26. Meyer A. D., Ichikawa T., Meins F. (1995) Horizontal gene transfer: regulated expression of a tobacco homologue of the Agrobacterium rhizogenes rolC gene. Mol. Gen. Genet. V. 249: P. 265-273.
  27. Mohajjel-Shoja H., Clément B., Perot J., Alioua M., Otten L. (2011) Biological activity of the Agrobacterium rhizogenes-derived trolC gene of Nicotiana tabacum and its functional relation to other plast genes. Mol. Plant-Microbe Interact. V. 24: P. 44-53.
  28. Sutton D. A. (1988). A revision of the tribe Antirrhineae. London. UK: Oxford University Press.
  29. Suzuki K., Yamashita I., Tanaka N. (2002) Tobacco plants were transformed by Agrobacterium rhizogenes infection during their evolution. Plant J. V. 32: P. 775-787.
  30. UNEP (2006). Soil Biodiversity Key to Environmentally Friendly Agriculture. UNEP Press Release. 22.03.2006. Available at ttp: // www.unep.org/Documents.Multilingual/Default.asp?DocumentID=471&ArticleID=5236&l=en. Дата обращения 10.05.2015.
  31. Warwick S. I., Lеgуre A., Simard M. J., James T. (2008) Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population. Mol Ecol. V. 17: P. 1387-1395.
  32. Warwick S. I., Simard M.-J., Legere A., Beckie H. J., Braun L., Zhu B., Mason P., Seguin-Swartz G., Stewart C. N. Jr (2003) Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O. E. Schulz // Theoretical and Applied Genetics. V. 107: P. 528-539.
  33. White F., Garfinkel D., Huffman G. A., Gordon M., Nester E. W. (1983) Sequences homologous to Agrobacterium rhizogenes T-DNA in the genomes of uninfected plants. Nature. V. 301: P. 348-350.

Copyright (c) 2015 Matveeva T.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies