🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Study of the dynamics of microbial communities of Russian rye starter cultures of spontaneous fermentation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Background: The study of the spontaneously fermented sourdough microbiome is currently receiving considerable attention worldwide. However, the taxonomic structure of the Russian spontaneously fermented sourdough microbiome remains insufficiently studied using metagenomic methods, despite the important role of the microbiome in ensuring bread quality and safety.

Aim: The aim of the work was to study the dynamics of Russian spontaneous sourdoughs microbial communities during long-term propagation. The objects of the study were eight starter cultures of spontaneous fermentation: four thick rye and four liquid rye starter cultures without brewing.

Methods: Four batches of rye flour of different grades (“wallpaper” and “stripped”) were used to prepare the starter. The composition of microbial communities was determined using high-throughput sequencing of fragments of the 16S rRNA gene.

Results: It was shown that during the sequential refreshing of starter cultures, the proportion of representatives of proteobacteria decreases, while the proportion of Firmicutes increases. The changes in the bacterial community coincided with a decrease in the pH of the starter culture, as well as a significant change in the odor of the starter culture from an unpleasant putrid to a pronounced pleasant odor of the starter culture. The mature starter cultures were dominated by representatives of the Firmicutes type, mainly represented by lactic acid bacteria of the Lactobacillaceae family. It was found that in the process of sequential renewal of starter cultures with water-flour nutrient mixtures, a significant change in the taxonomic structure of the starter microbiome occurs at the level of the Lactobacillaceae family. Namely, the relative abundance of the genera Latilactobacillus, Levilactobacillus, Lactiplantibacillus, Weissella, Pediococcus, Leuconostoc, Lactococcus, Enterococcus, characteristic for young ferments of spontaneous fermentation, decreased, with a simultaneous increase in Fructilactobacillus and Companilactobacillus in dense starter cultures, and Limosilactobacillus and Fructilactobacillus—in liquid starter cultures without brewing. Lactobacilli Fructilactobacillus sanfranciscensis and Companilactobacillus sp. dominated in mature thick rye starter cultures; Limosilactobacillus pontis prevailed in liquid rye starter cultures without welding on stripped flour; L. pontis and F. sanfranciscensis prevailed in wallpaper flour.

Conclusion: As a result of the conducted studies, there were no statistically significant differences in alpha or beta diversity between the starter cultures bred using different grades and batches of flour. It has been shown that the parameters of Russian starter culture management (humidity, temperature), which differ from those accepted abroad, have a decisive influence on the formation of the microbiome of starter cultures of spontaneous fermentation at the level of lactobacillus species.

About the authors

Marina N. Lokachuk

Scientific Research Institute for the Baking Industry

Author for correspondence.
Email: m.lokachuk@gosniihp.ru
ORCID iD: 0000-0001-5074-2457
SPIN-code: 7622-8404

St. Petersburg Branch

Russian Federation, 7 Podbelskogo hwy, Pushkin, Saint Petersburg, 196608

Olesya A. Savkina

Scientific Research Institute for the Baking Industry

Email: 1103savkina@mail.ru
ORCID iD: 0000-0002-2372-4277
SPIN-code: 7310-0439

Cand. Sci. (Engineering), St. Petersburg Branch

Russian Federation, 7 Podbelskogo hwy, Pushkin, Saint Petersburg, 196608

Vadim K. Khlestkin

Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

Email: dir2645@yandex.ru
ORCID iD: 0000-0001-9605-8028
SPIN-code: 6367-2970

Cand. Sci. (Chemistry)

Russian Federation, 10 Lavrentieva av, Novosibirsk, 630090

Lina I. Kuznetsova

Scientific Research Institute for the Baking Industry

Email: l.kuznetcova@gosniihp.ru
ORCID iD: 0000-0002-1149-6043
SPIN-code: 9226-0790

Dr. Sci. (Engineering), St. Petersburg Branch

Russian Federation, 7 Podbelskogo hwy, Pushkin, Saint Petersburg, 196608

Olga I. Parakhina

Scientific Research Institute for the Baking Industry

Email: o.parakhina@gosniihp.ru
ORCID iD: 0000-0002-0508-2813
SPIN-code: 1548-3089

Cand. Sci. (Engineering), St. Petersburg Branch

Russian Federation, 7 Podbelskogo hwy, Pushkin, Saint Petersburg, 196608

References

  1. Gobbetti M, Minervini F, Pontonio E, et al. Drivers for the establishment and composition of the sourdough lactic acid bacteria biota. Int J Food Microbiol. 2016;239:3–18. doi: 10.1016/j.ijfoodmicro.2016.05.022
  2. Montemurro M, Pontonio E, Gobbetti M, Rizzello CG. Investigation of the nutritional, functional and technological effects of the sourdough fermentation of sprouted flours. Int J Food Microbiol. 2019;302:47–58. doi: 10.1016/j.ijfoodmicro.2018.08.005
  3. Lutter L, Jõudu I, Andreson H. Volatile organic compounds and their generation in sourdough. Agron Res. 2023;21(S2):504–536. doi: 10.15159/AR.23.017
  4. Easterbrook-Smith G. By bread alone: baking as leisure, performance, sustenance, during the COVID-19 crisis. Leisure Sci. 2022;43(1–2):164–170. doi: 10.1080/01490400.2020.1773980
  5. Reese AT, Madden AA, Joossens M, et al. Influences of ingredients and bakers on the bacteria and fungi in sourdough starters and bread. mSphere. 2020;5(1):e00950–19. doi: 10.1128/msphere.00950-19
  6. Corsetti A, Settanni L, López CC, et al. A taxonomic survey of lactic acid bacteria isolated from wheat (Triticum durum) kernels and non-conventional flours. Syst Appl Microbiol. 2007;30(7):561–571. doi: 10.1016/j.syapm.2007.07.001
  7. Calvert MD, Madden AA, Nichols LM, et al. A review of sourdough starters: Ecology, practices, and sensory quality with applications for baking and recommendations for future research. PeerJ. 2021;9:11389. doi: 10.7717/peerj.11389
  8. Martín-Garcia A, Riu-Aumatell M, López-Tamames E. Influence of process parameters on sourdough microbiota, physical properties and sensory profile. Food Rev Int. 2023;39(1):334–348. doi: 10.1080/87559129.2021.1906698
  9. Mayrink Lima TT, de Oliveira Hosken B, De Dea Lindner J, et al. How to deliver sourdough with appropriate characteristics for the bakery industry? The answer may be provided by microbiota. Food Biosci. 2023;56:103072. doi: 10.1016/j.fbio.2023.103072
  10. De Vuyst L, González-Alonso V, Wardhana YR, Pradal I. Taxonomy and species diversity of sourdough lactic acid bacteria. In: Gobbetti M, Gänzle M, editors. Handbook on sourdough biotechnology. Springer, Cham: Springer International Publishing; 2023. P. 97–160. doi: 10.1007/978-3-031-23084-4_6
  11. De Vuyst L, Comasio A, Kerrebroeck SV. Sourdough production: fermentation strategies, microbial ecology, and use of non-flour ingredients. Crit Rev Food Sci Nutr. 2023;63(15):2447–2479. doi: 10.1080/10408398.2021.1976100
  12. De Vuyst L, Van Kerrebroeck S, Leroy F. Microbial ecology and process technology of sourdough fermentation. Adv Appl Microbiol. 2017;100:49–160. doi: 10.1016/bs.aambs.2017.02.003
  13. Van Kerrebroeck S, Bastos FCC, Harth H, De Vuyst L. A low pH does not determine the community dynamics of spontaneously developed backslopped liquid wheat sourdoughs but does influence their metabolite kinetics. Int J Food Microbiol. 2016;239:54–64. doi: 10.1016/j.ijfoodmicro.2016.07.019
  14. Arora K, Ameur H, Polo A, et al. Thirty years of knowledge on sourdough fermentation: A systematic review. Trends Food Sci Technol. 2021;108:71–83. doi: 10.1016/j.tifs.2020.12.008
  15. Landis EA, Oliverio AM, McKenney EA, et al. The diversity and function of sourdough starter microbiomes. Elife. 2021;10:e61644. doi: 10.7554/eLife.61644
  16. Costa LF, Kothe CI, Grassotti TT, et al. Evolution of the spontaneous sourdoughs microbiota prepared with organic or conventional whole wheat flours from South Brazil. An Acad Bras Ciênc. 2022;94(S4): 0001–3765202220220091. doi: 10.1590/0001-3765202220220091
  17. Ercolini D, Pontonio E, De Filippis F, et al. Microbial ecology dynamics during rye and wheat sourdough preparation. Appl Environ Microbiol. 2013;79(24):7827–7836. doi: 10.1128/AEM.02955-13
  18. Minervini F, De Angelis M, Di Cagno R, Gobbetti M. Ecological parameters influencing microbial diversity and stability of traditional sourdough. Int J Food Microbiol. 2014;171:136–146. doi: 10.1016/j.ijfoodmicro.2013.11.021
  19. Harth H, Van Kerrebroeck S, De Vuyst L. Community dynamics and metabolite target analysis of spontaneous, backslopped barley sourdough fermentations under laboratory and bakery conditions. Int J Food Microbiol. 2016;228:22–32. doi: 10.1016/j.ijfoodmicro.2016.04.011
  20. Oshiro M, Zendo T, Nakayama J. Diversity and dynamics of sourdough lactic acid bacteriota created by a slow food fermentation system. J Biosci Bioeng. 2021;131(4):333–340. doi: 10.1016/j.jbiosc.2020.11.007
  21. Alvarez-Sieiro P, Montalbán-López M, Mu D, Kuipers OP. Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol. 2016;100:2939–2951. doi: 10.1007/s00253-016-7343-9
  22. Sadiq FA, Yan B, Tian F, et al. Lactic acid bacteria as antifungal and anti-mycotoxigenic agents: a comprehensive review. Compr Rev Food Sci Food Saf. 2019;18(5):1403–1436. doi: 10.1111/1541-4337.12481
  23. Darbandi A, Asadi A, Mahdizade Ari M, et al. Bacteriocins: properties and potential use as antimicrobials. J Clin Lab Anal. 2022;36(1):e24093. doi: 10.1002/jcla.24093
  24. Gänzle MG, Zheng J. Lifestyles of sourdough lactobacilli — Do they matter for microbial ecology and bread quality? Int J Food Microbiol. 2019;302:15–23. doi: 10.1016/j.ijfoodmicro.2018.08.019
  25. Kosovan AP, editor. Collection of modern bakery technologies. Moscow: Moscow Printing House No. 2; 2008. (In Russ.)
  26. Bessmeltseva M, Viiard E, Simm J, et al. Evolution of bacterial consortia in spontaneously started rye sourdoughs during two months of daily propagation. PLoS One. 2014;9(4):0095449. doi: 10.1371/journal.pone.0095449
  27. McKenney EA, Nichols LM, Alvarado S, et al. Sourdough starters exhibit similar succession patterns but develop flour-specific climax communities. PeerJ. 2023;11:e16163. doi: 10.7717/peerj.16163
  28. Boreczek J, Litwinek D, Żylińska-Urban J, et al. Bacterial community dynamics in spontaneous sourdoughs made from wheat, spelt, and rye wholemeal flour. MicrobiologyOpen. 2020;9:e1009. doi: 10.1002/mbo3.1009
  29. Afanasyeva OV. Microbiological control of bakery production. Moscow; 1976. (In Russ.)
  30. Khlestkin VK, Lokachuk MN, Savkina OA, et al. Taxonomic structure of bacterial communities in sourdoughs of spontaneous fermentation. Vavilov Journal of Genetics and Breeding. 2022;26(4):385–393. doi: 10.18699/VJGB-22-47 EDN: CYDECO
  31. Lokachuk MN, Frolova JM. Study of the microbiota species composition and biotechnological properties of spontaneous sourdough during propagation. In: Proceedings of the International scientific and practical conference of young scientists and specialists “Current issues and modern solutions in food systems”; 2022 Sept 20–22; Moscow. EDN: LPJONE
  32. Kuznetsova LI, Parakhina OA, Savkina OA, Burykina MS. Starting compositions of microorganisms for sourdoughs. Bakery and confectionery forum. 2021;49:54–57. (In Russ.)
  33. Afanasyeva OV. Microbiology of bakery production. Saint Petersburg; 2003. (In Russ.)
  34. Picozzi C, Gallina S, Fera TD, Foschino R. Comparison of cultural media for the enumeration of sourdough lactic acid bacteria. Ann Microbiol. 2005;55(4):317–320.
  35. Gobbetti M, Rizzello CG, editors. Basic methods and protocols on sourdough. New York: Humana Press; 2024. 176 p. doi: 10.1007/978-1-0716-3706-7
  36. Bates ST, Berg-Lyons D, Caporaso JG, et al. Examining the global distribution of dominant archaeal populations in soil. ISME J. 2010;5(5):908–917. doi: 10.1038/ismej.2010.171
  37. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170
  38. McMurdie PJ, Holmes S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8(4):e61217. doi: 10.1371/journal.pone.0061217
  39. Wright ES. Using DECIPHER v2.0 to analyze big biological sequence data in R. The R Journal. 2016;8(1):352–359. doi: 10.32614/RJ-2016-025
  40. Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of highthroughput community sequencing data. Nat Methods. 2010;7(5): 335–336. doi: 10.1038/nmeth.f.303
  41. Menezes LAA, Salvo Sardaro ML, Duarte RTD, et al. Sourdough bacterial dynamics revealed by metagenomic analysis in Brazil. Food Microbiol. 2020;85:103302. doi: 10.1016/j.fm.2019.103302
  42. von Gastrow L, Michel E, Legrand J, et al. Microbial community dispersal from wheat grains to sourdoughs: A contribution of participatory research. Mol Ecol. 2023;32(10):2413–2427. doi: 10.1111/mec.16630
  43. Bilska A, Wochna K, Habiera M, Serwańska-Leja K. Health hazard associated with the presence of clostridium bacteria in food products. Foods. 2024;13(16):2578. doi: 10.3390/foods13162578
  44. Liu X, Zhou M, Jiaxin C, et al. Bacterial diversity in traditional sourdough from different regions in China. LWT. 2018;96(2):251–259. doi: 10.1016/j.lwt.2018.05.023
  45. Oleinikova Y, Amangeldi A, Zhaksylyk A, et al. Sourdough microbiota for improving bread preservation and safety: Main directions and new strategies. Foods. 2025;14(14):2443. doi: 10.3390/foods14142443
  46. Ceresino EB, Juodeikiene G, Schwenninger SM, da Rocha JMF, editors. Sourdough microbiota and starter cultures for industry. Switzerland: Springer International Publishing AG; 2024. 495 p. doi: 10.1007/978-3-031-48604-3
  47. Van Kerrebroeck S, Maes D, De Vuyst L. Sourdoughs as a function of their species diversity and process conditions, a meta-analysis. Trends Food Sci Technol. 2017;68:152–159. doi: 10.1016/j.tifs.2017.08.016

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Supplement 1
Download (340KB)
3. Fig. 1. Taxonomic structure of the microbiome of rye flour (at the phylum level).

Download (145KB)
4. Fig. 2. Taxonomic structure of the prokaryotic microbiome of rye flour based on the analysis of the 16S rRNA metagenome at the genus level (the more intense the red color, the higher (in %) the representation of the taxon; the most intense red color corresponds to 60%, the least intense - 0%).

Download (195KB)
5. Fig. 3. Changes in biotechnological properties: a — thick rye sourdoughs; b — liquid rye sourdoughs without brewing during one month of fermentation. The sourdough code indicates the type of sourdough (G — thick, L — liquid) and the flour batch (1, 2, 3, 4).

Download (334KB)
6. Fig. 4. Taxonomic structure of the sourdough microbiome (at the prokaryotic phylum level): a — thick sourdough; b — liquid sourdough. The sourdough code indicates the type of sourdough (G — thick, G — liquid) and the flour batch (1, 2, 3, 4).

Download (220KB)
7. Fig. 5. Microbiome composition: a – thick rye sourdoughs; b – liquid rye sourdoughs without brewing according to 16S rRNA metagenome analysis.

Download (386KB)

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».