Models of osmotic stress as a tool for proteomics and metabolomics of legume seeds
- Authors: Leonova T.S.1, Bilova T.E.2, Frolov A.A.1,3
-
Affiliations:
- Leibniz-Institute of Plant Biochemistry
- Saint Petersburg State University
- K.A. Timiryazev Institute of Plant Physiology
- Issue: Vol 22, No 2 (2024)
- Pages: 205-220
- Section: Methodology in ecological genetics
- URL: https://journals.rcsi.science/ecolgenet/article/view/262698
- DOI: https://doi.org/10.17816/ecogen611119
- ID: 262698
Cite item
Abstract
Drought poses a significant challenge to the sustainable development of modern agriculture and to the achievement of high crop yields. Water deficit causes osmotic stress and triggers plant physiological responses characterized by reduced water potential, diminished stomatal conductance, and decreased photosynthetic efficiency. Long-term adaptation to osmotic stress entails intricate metabolic rearrangements, leading to the accumulation of osmoprotectants, activation of antioxidant systems, and increased biosyntheses of stress-protective proteins. The severity and duration of drought, along with plant genotype and developmental stage, influence the plant response to stress, consequently affecting crop yield and quality. Particularly in the context of legumes, which are crucial for human and animal nutrition, understanding adaptive strategies to water deficit is essential for the cultivation of drought-resistant genotypes, primarily because these crops predominantly thrive in semi-arid regions. Proteomics and metabolomics approaches, in turn, serve as valuable tools, offering critical insights into the molecular dynamics governing plant responses to drought stress. Furthermore, the use of reliable drought simulation models is imperative for the effective evaluation of legume response to water scarcity, aiding the cultivation of drought-tolerant varieties. This review highlights the perspectives of utilizing different osmotic stress models to investigate proteome and metabolome alteration within seeds of food legumes.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Tatiana S. Leonova
Leibniz-Institute of Plant Biochemistry
Email: Tatiana.Leonova@ipb-halle.de
ORCID iD: 0000-0002-7153-5059
SPIN-code: 6132-3216
Germany, Halle (Saale)
Tatiana E. Bilova
Saint Petersburg State University
Email: bilova.tatiana@gmail.com
ORCID iD: 0000-0002-6024-3667
SPIN-code: 4992-4778
Scopus Author ID: 6508127438
ResearcherId: M-2405-2015
Cand. Sci. (Biology)
Russian Federation, Saint PetersburgAndrej A. Frolov
Leibniz-Institute of Plant Biochemistry; K.A. Timiryazev Institute of Plant Physiology
Author for correspondence.
Email: Andrej.Frolov@ipb-halle.de
ORCID iD: 0000-0002-7593-7717
SPIN-code: 5105-2490
Dr. Sci. (Biology)
Germany, Halle (Saale); Moscow, RussiaReferences
- Mbow C, Rosenzweig C, Barioni LG, et al. Food security. In: Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Cambridge University Press, 2019. P. 437–550. doi: 10.1017/9781009157988.007
- Dietz K-J, Zörb C, Geilfus C-M. Drought and crop yield. Plant Biol. 2021;23(6):881–893. doi: 10.1111/PLB.13304
- Zandalinas SI, Mittler R, Balfagón D, et al. Plant adaptations to the combination of drought and high temperatures. Physiol Plant. 2018;162(1):2–12. doi: 10.1111/PPL.12540
- Farooq M, Wahid A, Kobayashi N, et al. Plant drought stress: Effects, mechanisms and management. In: Lichtfouse E, Navarrete M, Debaeke P, et al editors. Sustainable agriculture. Dordrecht: Springer; 2009. P. 153–188. doi: 10.1007/978-90-481-2666-8_12/COVER
- Daryanto S, Wang L, Jacinthe PA. Global synthesis of drought effects on food legume production. PLoS One. 2015;10(6):e0127401. doi: 10.1371/JOURNAL.PONE.0127401
- Khatun M, Sarkar S, Era FM, et al. Drought stress in grain legumes: Effects, tolerance mechanisms and management. Agronomy. 2021;11(12):2374. doi: 10.3390/AGRONOMY11122374
- Yan S, Bhawal R, Yin Z, et al. Recent advances in proteomics and metabolomics in plants. Mol Hortic. 2022;2:17. doi: 10.1186/S43897-022-00038-9
- Osmolovskaya N, Shumilina J, Kim A, et al. Methodology of drought stress research: experimental setup and physiological characterization. Int J Mol Sci. 2018;19(12):4089. doi: 10.3390/ijms19124089
- Hussain S, Hussain S, Qadir T, et al. Drought stress in plants: An overview on implications, tolerance mechanisms and agronomic mitigation strategies. Plant Sci Today. 2019;6(4):389–402. doi: 10.14719/PST.2019.6.4.578
- Shanker AK, Maheswari M, Yadav SK, et al. Drought stress responses in crops. Funct Integr Genom. 2014;14(1):11–22. doi: 10.1007/S10142-013-0356-X
- Hammad SAR, Ali OAM. Physiological and biochemical studies on drought tolerance of wheat plants by application of amino acids and yeast extract. Ann Agric Sci. 2014;59(1):133–145. doi: 10.1016/J.AOAS.2014.06.018
- Sarwat M, Tuteja N. Hormonal signaling to control stomatal movement during drought stress. Plant Gene. 2017;11-B:143–153. doi: 10.1016/J.PLGENE.2017.07.007
- Harrison EL, Arce Cubas L, Gray JE, Hepworth C. The influence of stomatal morphology and distribution on photosynthetic gas exchange. Plant J. 2020;101(4):768–779. doi: 10.1111/TPJ.14560
- Anjum SA, Xie X-Y, Wang L-C, et al. Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res. 2011;6(9):2026–2032. doi: 10.5897/AJAR10.027
- Razi K, Muneer S. Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Crit Rev Biotechnol. 2021;41(5):669–691. doi: 10.1080/07388551.2021.1874280
- Chaves MM, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot. 2009;103(4):551–560. doi: 10.1093/AOB/MCN125
- Waser NM, Price MV. Drought, pollen and nectar availability, and pollination success. Ecology. 2016;97(6):1400–1409. doi: 10.1890/15-1423.1
- Awasthi R, Kaushal N, Vadez V, et al. Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Funct Plant Biol. 2014;41(11):1148–1167. doi: 10.1071/FP13340
- Ghanbari AA, Mousavi SH, Mousapour GA, Rao IM. Effects of water stress on leaves and seeds of bean (Phaseolus vulgaris L.). Turk J Field Crops. 2013;181(1):73–77.
- Sehgal A, Sita K, Siddique KHM, et al. Drought or/and heat-stress effects on seed filling in food crops: Impacts on functional biochemistry, seed yields, and nutritional quality. Front Plant Sci. 2018;871:1705. doi: 10.3389/FPLS.2018.01705
- Ochatt SJ. Agroecological impact of an in vitro biotechnology approach of embryo development and seed filling in legumes. Agron Sustain Dev. 2015;35(2):535–552. doi: 10.1007/S13593-014-0276-8
- Zia R, Nawaz MS, Siddique MJ, et al. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiol Res. 2021;242:126626. doi: 10.1016/J.MICRES.2020.126626
- Basu S, Ramegowda V, Kumar A, Pereira A. Plant adaptation to drought stress. F1000Res. 2016;5(F1000 Faculty Rev):1554. doi: 10.12688/F1000RESEARCH.7678.1
- Kooyers NJ. The evolution of drought escape and avoidance in natural herbaceous populations. Plant Sci. 2015;234:155–162. doi: 10.1016/J.PLANTSCI.2015.02.012
- Bandurska H. Drought stress responses: Coping strategy and resistance. Plants. 2022;11(7):922. doi: 10.3390/PLANTS11070922
- Ashraf M. Inducing drought tolerance in plants: recent advances. Biotechnol Adv. 2010;28(1):169–183. doi: 10.1016/J.BIOTECHADV.2009.11.005
- Ma Y, Dias MC, Freitas H. Drought and salinity stress responses and microbe-induced tolerance in plants. Front Plant Sci. 2020;11(13):591911. doi: 10.3389/FPLS.2020.591911
- Rodrigues J, Inzé D, Nelissen H, Saibo NJM. Source-sink regulation in crops under water deficit. Trends Plant Sci. 2019;24(7):652–663. doi: 10.1016/J.TPLANTS.2019.04.005
- Karlova R, Boer D, Hayes S, Testerink C. Root plasticity under abiotic stress. Plant Physiol. 2021;187(3):1057. doi: 10.1093/PLPHYS/KIAB392
- Dinneny JR. Developmental responses to water and salinity in root systems. Annu Rev Cell Dev Biol. 2019;35:239–257. doi: 10.1146/ANNUREV-CELLBIO-100617-062949
- Robbins NE, Dinneny JR. Growth is required for perception of water availability to pattern root branches in plants. PNAS USA. 2018;115(4): E822–E831. doi: 10.1073/PNAS.1710709115
- Bailey-Serres J, Parker JE, Ainsworth EA, et al. Genetic strategies for improving crop yields. Nature. 2019;575(7781):109–118. doi: 10.1038/S41586-019-1679-0
- Gupta A, Rico-Medina A, Caño-Delgado AI. The physiology of plant responses to drought. Science. 2020;368(6488):266–269. doi: 10.1126/SCIENCE.AAZ7614
- Chen K, Li G-J, Bressan RA, et al. Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol. 2020;62(1):25–54. doi: 10.1111/jipb.12899
- Groppa MD, Benavides MP. Polyamines and abiotic stress: recent advances. Amino Acids. 2008;34(1):35–45. doi: 10.1007/S00726-007-0501-8
- Ozturk M, Turkyilmaz Unal B, García-Caparrós P, et al. Osmoregulation and its actions during the drought stress in plants. Physiol Plant. 2021;172(2):1321–1335. doi: 10.1111/PPL.13297
- Hayat S, Hayat Q, Alyemeni MN, et al. Role of proline under changing environments: a review. Plant Signal Behav. 2012;7(11): 1456–1466. doi: 10.4161/PSB.21949
- Annunziata MG, Ciarmiello LF, Woodrow P, et al. Spatial and temporal profile of glycine betaine accumulation in plants under abiotic stresses. Front Plant Sci. 2019;10:230. doi: 10.3389/FPLS.2019.00230
- Kaur H, Manna M, Thakur T, et al. Imperative role of sugar signaling and transport during drought stress responses in plants. Physiol Plant. 2021;171(4):833–848. doi: 10.1111/PPL.13364
- Mathan J, Singh A, Ranjan A. Sucrose transport in response to drought and salt stress involves ABA-mediated induction of OsSWEET13 and OsSWEET15 in rice. Physiol Plant. 2021;171(4): 620–637. doi: 10.1111/PPL.13210
- La VH, Lee B-R, Islam T, et al. Antagonistic shifting from abscisic acid- to salicylic acid-mediated sucrose accumulation contributes to drought tolerance in Brassica napus. Environ Exp Bot. 2019;162: 38–47. doi: 10.1016/J.ENVEXPBOT.2019.02.001
- Shumilina J, Kusnetsova A, Tsarev A, et al. Glycation of plant proteins: Regulatory roles and interplay with sugar signalling? Int J Mol Sci. 2019;20(9):2366. doi: 10.3390/ijms20092366
- Iordachescu M, Imai R. Trehalose biosynthesis in response to abiotic stresses. J Integr Plant Biol. 2008;50(10):1223–1229. doi: 10.1111/J.1744-7909.2008.00736.X
- Yuan F, Yang H, Xue Y, et al. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature. 2014;514(7522):367–371. doi: 10.1038/NATURE13593
- Fahad S, Bajwa AA, Nazir U, et al. Crop production under drought and heat stress: Plant responses and management options. Front Plant Sci. 2017;8:1147. doi: 10.3389/FPLS.2017.01147
- Apel K, Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55: 373–379. doi: 10.1146/ANNUREV.ARPLANT.55.031903.141701
- Sun Z, Li S, Chen W, et al. Plant dehydrins: Expression, regulatory networks, and protective roles in plants challenged by abiotic stress. Int J Mol Sci. 2021;22(23):12619. doi: 10.3390/IJMS222312619
- Priya M, Dhanker OP, Siddique KHM, et al. Drought and heat stress-related proteins: an update about their functional relevance in imparting stress tolerance in agricultural crops. Theor Appl Genet. 2019;132(6):1607–1638. doi: 10.1007/S00122-019-03331-2
- Kalogeropoulos N, Chiou A, Ioannou M, et al. Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chem. 2010;121(3):682–690. doi: 10.1016/J.FOODCHEM.2010.01.005
- Robinson GHJ, Balk J, Domoney C. Improving pulse crops as a source of protein, starch and micronutrients. Nutr Bull. 2019;44(3):202. doi: 10.1111/NBU.12399
- Stagnari F, Maggio A, Galieni A, Pisante M. Multiple benefits of legumes for agriculture sustainability: an overview. Chem Biol Technol Agric. 2017;4:2. doi: 10.1186/S40538-016-0085-1
- Jensen ES, Peoples MB, Boddey RM, et al. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agron Sustain Dev. 2012;32(2):329–364. doi: 10.1007/S13593-011-0056-7
- Preissel S, Reckling M, Schläfke N, Zander P. Magnitude and farm-economic value of grain legume pre-crop benefits in Europe: A review. Field Crops Res. 2015;175:64–79. doi: 10.1016/J.FCR.2015.01.012
- St Luce M, Grant CA, Zebarth BJ, et al. Legumes can reduce economic optimum nitrogen rates and increase yields in a wheat-canola cropping sequence in Western Canada. Field Crops Res. 2015;179: 12–25. doi: 10.1016/J.FCR.2015.04.003
- Nadeem M, Li J, Yahya M, et al. Research progress and perspective on drought stress in legumes: A review. Int J Mol Sci. 2019;20(10):2541. doi: 10.3390/IJMS20102541
- Ullah A, Farooq M. The challenge of drought stress for grain legumes and options for improvement. Arch Agron Soil Sci. 2022;68(11):1601–1618. doi: 10.1080/03650340.2021.1906413
- Farooq M, Gogoi N, Barthakur S, et al. Drought stress in grain legumes during reproduction and grain filling. J Agron Crop Sci. 2017;203(2):81–102. doi: 10.1111/JAC.12169
- Busse MD, Bottomley PJ. Growth and nodulation responses of Rhizobium meliloti to water stress induced by permeating and nonpermeating solutes. Appl Environ Microbiol. 1989;55(10):2431. doi: 10.1128/AEM.55.10.2431-2436.1989
- Guerin V, Trinchant JC, Rigaud J. Nitrogen fixation (C2H2 reduction) by broad bean (Vicia faba L.) Nodules and bacteroids under water-restricted conditions. Plant Physiol. 1990;92(3):595–601. doi: 10.1104/PP.92.3.595
- Davis LC, Imsande J. Direct test for altered gas exchange rates in water-stressed soybean nodules. Ann Bot. 1988;61(2):169–177. doi: 10.1093/oxfordjournals.aob.a087539
- Purcell LC, King CA. Drought and nitrogen source effects on nitrogen nutrition, seed growth, and yield in soybean. J Plant Nutr. 2008;19(6):969–993. doi: 10.1080/01904169609365173
- Du Y, Zhao Q, Chen L, et al. Effect of drought stress at reproductive stages on growth and nitrogen metabolism in soybean. Agronomy. 2020;10(2):302. doi: 10.3390/AGRONOMY10020302
- Alghamd SS. Chemical composition of FABA bean (Vicia faba L.) genotypes under various water regimes. Pakistan J Nutr. 2009. Vol. 8, N. 4. P. 477–482. doi: 10.3923/PJN.2009.477.482
- Ibrahim SA, Hala K. Growth, yield and chemical constituents of soybean (Glycin max L.) plants as affect by plant spacing under different irrigation intervals. Res J Agric Biol Sci. 2007;3(6):657–663.
- Hossein Behboudian M, Qifu M, Turner NC, Palta JA. Reactions of chickpea to water stress: yield and seed composition. J Sci Food Agric. 2001;81(13):1288–1291. doi: 10.1002/JSFA.939
- Hummel M, Hallahan BF, Brychkova G, et al. Reduction in nutritional quality and growing area suitability of common bean under climate change induced drought stress in Africa. Sci Rep. 2018;8:16187. doi: 10.1038/s41598-018-33952-4
- Mansourifar C, Shaban M, Ghobadi M, Ajirlu AR. Effect of drought stress and N fertilizer on yield, yield components and grain storage proteins in chickpea (Cicer arientum L.) cultivars. Afr J Agron. 2021;9(1):1–9.
- Khalil SE, Ismael EG. Growth, yield and seed quality of Lupinus termis as affected by different soil moisture levels and different ways of yeast application. J Am Sci. 2010;6(8):141–153.
- Dwivedi SL, Nigam SN, Nageswara Rao RC, et al. Effect of drought on oil, fatty acids and protein contents of groundnut (Arachis hypogaea L.) seeds. Field Crops Res. 1996;48(2–3):125–133. doi: 10.1016/S0378-4290(96)01027-1
- Kirnak H, Dogan E, Turkoglu H. Effect of drip irrigation intensity on soybean seed yield and quality in the semi arid Harran plain, Turkey. Span J Agric Res. 2010;8(4):1208–1217. doi: 10.5424/SJAR/2010084-1239
- Bellaloui N, Mengistu A, Kassem MA, et al. Effects of genetics and environment on fatty acid stability in soybean seed. Food Nutr Sci. 2013;4(9):165–175. doi: 10.4236/FNS.2013.49A1024
- Gebeyehu S, Wiese H, Schubert S. Effects of drought stress on seed sink strength and leaf protein patterns of common bean genotypes. Afr Crop Sci J. 2010;18(2):75–88. doi: 10.4314/ACSJ.V18I2.65799
- Sehgal A, Sita K, Bhandari K, et al. Influence of drought and heat stress, applied independently or in combination during seed development, on qualitative and quantitative aspects of seeds of lentil (Lens culinaris Medikus) genotypes, differing in drought sensitivity. Plant Cell Environ. 2019;42(1):198–211. doi: 10.1111/PCE.13328
- Nakagawa ACS, Itoyama H, Ariyoshi Y, et al. Drought stress during soybean seed filling affects storage compounds through regulation of lipid and protein metabolism. Acta Physiol Plant. 2018;40(6):111. doi: 10.1007/S11738-018-2683-Y
- Rozrokh M, Sabaghpour SH, Armin M, Asgharipour M. The effects of drought stress on some biochemical traits in twenty genotypes of chickpea. Eur J Exp Biol. 2012;2:1980–1987.
- El Haddad N, Choukri H, Ghanem ME, et al. High-temperature and drought stress effects on growth, yield and nutritional quality with transpiration response to vapor pressure deficit in lentil. Plants. 2022;11(1):95. doi: 10.3390/PLANTS11010095/S1
- Ellis N, Hattori C, Cheema J, et al. NMR metabolomics defining genetic variation in pea seed metabolites. Front Plant Sci. 2018;9:367950. doi: 10.3389/FPLS.2018.01022
- Farooq M, Hussain M, Usman M, et al. Impact of abiotic stresses on grain composition and quality in food legumes. J Agric Food Chem. 2018;66(34):8887–8897. doi: 10.1021/acs.jafc.8b02924
- Langridge P, Reynolds M. Breeding for drought and heat tolerance in wheat. Theor Appl Genet. 2021;134(6):1753–1769. doi: 10.1007/S00122-021-03795-1
- Wang J, Li C, Li L, et al. Exploitation of drought tolerance-related genes for crop improvement. Int J Mol Sci. 2021;22(19):10265. doi: 10.3390/IJMS221910265
- McMillen MS, Mahama AA, Sibiya J, et al. Improving drought tolerance in maize: Tools and techniques. Front Genet. 2022;13:1001001. doi: 10.3389/FGENE.2022.1001001
- Farooq M, Wahid A, Kobayashi N, et al. Plant drought stress: effects, mechanisms and management. Agron Sustain Dev. 2009;29(1):185–212. doi: 10.1051/AGRO:2008021
- Bodner G, Nakhforoosh A, Kaul H-P. Management of crop water under drought: a review. Agron Sustain Dev. 2015;35(2):401–442. doi: 10.1007/S13593-015-0283-4
- Ford KL, Cassin A, Bacic A. Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance. Front Plant Sci. 2011;2:44. doi: 10.3389/FPLS.2011.00044
- Deen S, Amist N, Singh NB. PEG imposed water deficit and physiological alterations in hydroponic cabbage. Iran J Plant Physiol. 2016;6(2):1651–1658.
- Ji H, Liu L, Li K, et al. PEG-mediated osmotic stress induces premature differentiation of the root apical meristem and outgrowth of lateral roots in wheat. J Exp Bot. 2014;65(17):4863–4872. doi: 10.1093/JXB/ERU255
- Chen T, Fluhr R. Singlet oxygen plays an essential role in the root’s response to osmotic stress. Plant Physiol. 2018;177(4): 1717–1727. doi: 10.1104/PP.18.00634
- Van Der Weele CM, Spollen WG, Sharp RE, Baskin TI. Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media. J Exp Bot. 2000;51(350):1555–1562. doi: 10.1093/JEXBOT/51.350.1555
- Frolov A, Bilova T, Paudel G, et al. Early responses of mature Arabidopsis thaliana plants to reduced water potential in the agar-based polyethylene glycol infusion drought mode. J Plant Physiol. 2017;208:70–83. doi: 10.1016/j.jplph.2016.09.013
- Paudel G, Bilova T, Schmidt R, et al. Osmotic stress is accompanied by protein glycation in Arabidopsis thaliana. J Exp Bot. 2016;67(22):6283–6295. doi: 10.1093/jxb/erw395
- Leonova T, Shumilina J, Kim A, et al. Agar-based polyethylene glycol (PEG) infusion model for pea (Pisum sativum L.) — perspectives of translation to legume crop plants. Biol Commun. 2022;67(3):236–244. doi: 10.21638/spbu03.2022.309
- Koskosidis A, Khah E, Mavromatis A, et al. Effect of PEG-induced drought stress on germination of ten chickpea (Cicer arietinum L.) genotypes. Not Bot Horti Agrobot Cluj Napoca. 2020;48(1):294–304. doi: 10.15835/NBHA48111799
- Foti C, Kalampokis IF, Aliferis KA, Pavli OI. Metabolic responses of two contrasting lentil genotypes to PEG-Induced drought stress. Agronomy. 2021;11(6):1190. doi: 10.3390/AGRONOMY11061190
- Yang Z-B, Eticha D, Rotter B, et al. Physiological and molecular analysis of polyethylene glycol-induced reduction of aluminium accumulation in the root tips of common bean (Phaseolus vulgaris). New Phytol. 2011;192(1):99–113. doi: 10.1111/J.1469-8137.2011.03784.X
- Fang P, Li M, Guo Q, et al. Genome-wide analysis of the SMXL gene family in common bean and identification of karrikin-responsive PvSMXL2 as a negative regulator of PEG-induced drought stress. Gene. 2023;887:147741. doi: 10.1016/J.GENE.2023.147741
- Leonova T, Popova V, Tsarev A, et al. Does protein glycation impact on the drought-related changes in metabolism and nutritional properties of mature pea (Pisum sativum L.) seeds? Int J Mol Sci. 2020;21(2):567. doi: 10.3390/ijms21020567
- Bündig C, Vu TH, Meise P, et al. Variability in osmotic stress tolerance of starch potato genotypes (Solanum tuberosum L.) as revealed by an in vitro screening: role of proline, osmotic adjustment and drought response in pot trials. J Agron Crop Sci. 2017;203(3): 206–218. doi: 10.1111/JAC.12186
- Jahan MS, Zhao CJ, Shi LB, et al. Physiological mechanism of melatonin attenuating to osmotic stress tolerance in soybean seedlings. Front Plant Sci. 2023;14:1193666. doi: 10.3389/FPLS.2023.1193666
- Shivakrishna MP, Reddy AK, Rao DM. Effect of PEG-6000 imposed drought stress on RNA content, relative water content (RWC), and chlorophyll content in peanut leaves and roots. Saudi J Biol Sci. 2018;25(2):285–289. doi: 10.1016/J.SJBS.2017.04.008
- Muscolo A, Junker A, Klukas C, et al. Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. J Exp Bot. 2015;66(18):5467. doi: 10.1093/JXB/ERV208
- Ramalingam A, Kudapa H, Pazhamala LT, et al. Proteomics and metabolomics: Two emerging areas for legume improvement. Front Plant Sci. 2015;6:165222. doi: 10.3389/FPLS.2015.01116
- Weckwerth W. Unpredictability of metabolism – the key role of metabolomics science in combination with next-generation genome sequencing. Anal Bioanal Chem. 2011;400(7):1967–1978. doi: 10.1007/S00216-011-4948-9
- Bouchnak I, Brugière S, Moyet L, et al. Unraveling hidden components of the chloroplast envelope proteome: Opportunities and limits of better MS sensitivity. Mol Cell Proteom. 2019;18(7): 1285–1306. doi: 10.1074/MCP.RA118.000988
- Yang Y, Saand MA, Huang L, et al. Applications of multi-omics technologies for crop improvement. Front Plant Sci. 2021;12:563953. doi: 10.3389/FPLS.2021.563953
- Li H, Yang M, Zhao C, et al. Physiological and proteomic analyses revealed the response mechanisms of two different drought-resistant maize varieties. BMC Plant Biol. 2021;21:513. doi: 10.1186/S12870-021-03295-W
- Yahoueian SH, Bihamta MR, Babaei HR, Bazargani MM. Proteomic analysis of drought stress response mechanism in soybean (Glycine max L.) leaves. Food Sci Nutr. 2021;9(4):2010–2020. doi: 10.1002/FSN3.2168
- Gupta S, Mishra SK, Misra S, et al. Revealing the complexity of protein abundance in chickpea root under drought-stress using a comparative proteomics approach. Plant Physiol Biochem. 2020;151:88–102. doi: 10.1016/J.PLAPHY.2020.03.005
- Kottapalli KR, Zabet-Moghaddam M, Rowland D, et al. Shotgun label-free quantitative proteomics of water-deficit-stressed midmature peanut (Arachis hypogaea L.) seed. J Proteome Res. 2013;12(11):5048–5057. doi: 10.1021/PR400936D
- Poza-Viejo L, Redondo-Nieto M, Matías J, et al. Shotgun proteomics of quinoa seeds reveals chitinases enrichment under rainfed conditions. Sci Rep. 2023;13(1):4951. doi: 10.1038/s41598-023-32114-5
- Farag MA, Sharaf El-Din MG, Selim MA, et al. Nuclear magnetic resonance metabolomics approach for the analysis of major legume sprouts coupled to chemometrics. Molecules. 2021;26(3):761. doi: 10.3390/MOLECULES26030761
- Fayek NM, Mekky RH, Dias CN, et al. UPLC-MS metabolome-based seed classification of 16 vicia species: A prospect for phyto-equivalency and chemotaxonomy of different accessions. J Agric Food Chem. 2021;69(17):5252–5266. doi: 10.1021/ACS.JAFC.0C06054/SUPPL_FILE/JF0C06054_SI_001.PDF
- Gundaraniya SA, Ambalam PS, Tomar RS. Metabolomic profiling of drought-tolerant and susceptible peanut (Arachis hypogaea L.) genotypes in response to drought stress. ACS Omega. 2020;5(48):31209–31219. doi: 10.1021/ACSOMEGA.0C04601
- Subramani M, Urrea CA, Kalavacharla V. Comparative analysis of untargeted metabolomics in tolerant and sensitive genotypes of common bean (Phaseolus vulgaris L.) seeds exposed to terminal drought stress. Metabolites. 2022;12(10):944. doi: 10.3390/METABO12100944/S1
Supplementary files
