Модели осмотического стресса как инструмент для протеомного и метаболомного анализа семян бобовых
- Авторы: Леонова Т.С.1, Билова Т.Е.2, Фролов А.А.1,3
-
Учреждения:
- Лейбниц-институт биохимии растений
- Санкт-Петербургский государственный университет
- Институт физиологии растений им. К.А. Тимирязева
- Выпуск: Том 22, № 2 (2024)
- Страницы: 205-220
- Раздел: Методология экологической генетики
- URL: https://journals.rcsi.science/ecolgenet/article/view/262698
- DOI: https://doi.org/10.17816/ecogen611119
- ID: 262698
Цитировать
Аннотация
Засуха представляет серьезную проблему для устойчивого развития современного сельского хозяйства и достижения высокой продуктивности сельскохозяйственных культур. Дефицит влаги вызывает осмотический стресс и запускает физиологические реакции растений, которые характеризуются снижением водного потенциала, уменьшением устьичной проводимости и понижением эффективности фотосинтеза. Длительная адаптация к осмотическому стрессу сопровождается сложными метаболическими перестройками, приводящими к накоплению осмопротекторов, активации антиоксидантных систем и усилению биосинтеза стресс-протекторных белков. Степень и продолжительность засухи, наряду с генотипом и стадией развития растений, влияют на реакцию растений на стресс, что, в свою очередь, сказывается на количестве и качестве урожая. В частности, для бобовых, которые играют важнейшую роль в системе питания человека и животных, понимание адаптивных стратегий против засухи имеет большое значение для выведения засухоустойчивых сортов, поскольку эти культуры произрастают преимущественно в полузасушливых регионах. В свою очередь, методы протеомики и метаболомики служат ценными инструментами, позволяющими всесторонне оценивать молекулярную динамику, которая определяет реакцию растений на засуху. Кроме того, для эффективной оценки реакции бобовых на дефицит влаги необходимо использование надежных моделей, имитирующих засуху. В данном обзоре рассматриваются перспективы использования различных моделей осмотического стресса для изучения протеомных и метаболомных изменений в семенах бобовых культур.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Татьяна Сергеевна Леонова
Лейбниц-институт биохимии растений
Email: Tatiana.Leonova@ipb-halle.de
ORCID iD: 0000-0002-7153-5059
SPIN-код: 6132-3216
Германия, Галле (Заале)
Татьяна Евгеньевна Билова
Санкт-Петербургский государственный университет
Email: bilova.tatiana@gmail.com
ORCID iD: 0000-0002-6024-3667
SPIN-код: 4992-4778
Scopus Author ID: 6508127438
ResearcherId: M-2405-2015
канд. биол. наук
Россия, Санкт-ПетербургАндрей Александрович Фролов
Лейбниц-институт биохимии растений; Институт физиологии растений им. К.А. Тимирязева
Автор, ответственный за переписку.
Email: Andrej.Frolov@ipb-halle.de
ORCID iD: 0000-0002-7593-7717
SPIN-код: 5105-2490
д-р биол. наук
Германия, Галле (Заале); Москва, РоссияСписок литературы
- Mbow C., Rosenzweig C., Barioni L.G., et al. Food security. В кн.: Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Cambridge University Press, 2019. P. 437–550. doi: 10.1017/9781009157988.007
- Dietz K.-J., Zörb C., Geilfus C.-M. Drought and crop yield // Plant Biol. 2021. Vol. 23, N. 6. P. 881–893. doi: 10.1111/PLB.13304
- Zandalinas S.I., Mittler R., Balfagón D., et al. Plant adaptations to the combination of drought and high temperatures // Physiol Plant. 2018. Vol. 162, N. 1. P. 2–12. doi: 10.1111/PPL.12540
- Farooq M., Wahid A., Kobayashi N., et al. Plant drought stress: Effects, mechanisms and management. В кн.: Lichtfouse E., Navarrete M., Debaeke P., et al editors. Sustainable agriculture. Dordrecht: Springer; 2009. P. 153–188. doi: 10.1007/978-90-481-2666-8_12/COVER
- Daryanto S., Wang L., Jacinthe P.A. Global synthesis of drought effects on food legume production // PLoS One. 2015. Vol. 10, N. 6. ID e0127401. doi: 10.1371/JOURNAL.PONE.0127401
- Khatun M., Sarkar S., Era F.M., et al. Drought stress in grain legumes: Effects, tolerance mechanisms and management // Agronomy. 2021. Vol. 11, N. 12. ID 2374. doi: 10.3390/AGRONOMY11122374
- Yan S., Bhawal R., Yin Z., et al. Recent advances in proteomics and metabolomics in plants // Mol Hortic. 2022. Vol. 2. ID 17. doi: 10.1186/S43897-022-00038-9
- Osmolovskaya N., Shumilina J., Kim A., et al. Methodology of drought stress research: experimental setup and physiological characterization // Int J Mol Sci. 2018. Vol. 19, N. 12. ID 4089. doi: 10.3390/ijms19124089
- Hussain S., Hussain S., Qadir T., et al. Drought stress in plants: An overview on implications, tolerance mechanisms and agronomic mitigation strategies // Plant Sci Today. 2019. Vol. 6, N. 4. P. 389–402. doi: 10.14719/PST.2019.6.4.578
- Shanker A.K., Maheswari M., Yadav S.K., et al. Drought stress responses in crops // Funct Integr Genom. 2014. Vol. 14, N. 1. P. 11–22. doi: 10.1007/S10142-013-0356-X
- Hammad S.A.R., Ali O.A.M. Physiological and biochemical studies on drought tolerance of wheat plants by application of amino acids and yeast extract // Ann Agric Sci. 2014. Vol. 59, N. 1. P. 133–145. doi: 10.1016/J.AOAS.2014.06.018
- Sarwat M., Tuteja N. Hormonal signaling to control stomatal movement during drought stress // Plant Gene. 2017. Vol. 11-B. P. 143–153. doi: 10.1016/J.PLGENE.2017.07.007
- Harrison E.L., Arce Cubas L., Gray J.E., Hepworth C. The influence of stomatal morphology and distribution on photosynthetic gas exchange // Plant J. 2020. Vol. 101, N. 4. P. 768–779. doi: 10.1111/TPJ.14560
- Anjum S.A., Xie X.-Y., Wang L.-C., et al. Morphological, physiological and biochemical responses of plants to drought stress // Afr J Agric Res. 2011. Vol. 6, N. 9. P. 2026–2032. doi: 10.5897/AJAR10.027
- Razi K., Muneer S. Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops // Crit Rev Biotechnol. 2021. Vol. 41, N. 5. P. 669–691. doi: 10.1080/07388551.2021.1874280
- Chaves M.M., Flexas J., Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell // Ann Bot. 2009. Vol. 103, N. 4. P. 551–560. doi: 10.1093/AOB/MCN125
- Waser N.M., Price M.V. Drought, pollen and nectar availability, and pollination success // Ecology. 2016. Vol. 97, N. 6. P. 1400–1409. doi: 10.1890/15-1423.1
- Awasthi R., Kaushal N., Vadez V., et al. Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea // Funct Plant Biol. 2014. Vol. 41, N. 11. P. 1148–1167. doi: 10.1071/FP13340
- Ghanbari A.A., Mousavi S.H., Mousapour G.A., Rao I.M. Effects of water stress on leaves and seeds of bean (Phaseolus vulgaris L.) // Turk J Field Crops. 2013. Vol. 181, N. 1. P. 73–77.
- Sehgal A., Sita K., Siddique K.H.M., et al. Drought or/and heat-stress effects on seed filling in food crops: Impacts on functional biochemistry, seed yields, and nutritional quality // Front Plant Sci. 2018. Vol. 871. ID 1705. doi: 10.3389/FPLS.2018.01705
- Ochatt S.J. Agroecological impact of an in vitro biotechnology approach of embryo development and seed filling in legumes // Agron Sustain Dev. 2015. Vol. 35, N. 2. P. 535–552. doi: 10.1007/S13593-014-0276-8
- Zia R., Nawaz M.S., Siddique M.J., et al. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation // Microbiol Res. 2021. Vol. 242. ID 126626. doi: 10.1016/J.MICRES.2020.126626
- Basu S., Ramegowda V., Kumar A., Pereira A. Plant adaptation to drought stress // F1000Res. 2016. Vol. 5, N. F1000 Faculty Rev. ID 1554. doi: 10.12688/F1000RESEARCH.7678.1
- Kooyers N.J. The evolution of drought escape and avoidance in natural herbaceous populations // Plant Sci. 2015. Vol. 234. P. 155–162. doi: 10.1016/J.PLANTSCI.2015.02.012
- Bandurska H. Drought stress responses: Coping strategy and resistance // Plants. 2022. Vol. 11, N. 7. ID 922. doi: 10.3390/PLANTS11070922
- Ashraf M. Inducing drought tolerance in plants: recent advances // Biotechnol Adv. 2010. Vol. 28, N. 1. P. 169–183. doi: 10.1016/J.BIOTECHADV.2009.11.005
- Ma Y., Dias M.C., Freitas H. Drought and salinity stress responses and microbe-induced tolerance in plants // Front Plant Sci. 2020. Vol. 11, N. 13. ID 591911. doi: 10.3389/FPLS.2020.591911
- Rodrigues J., Inzé D., Nelissen H., Saibo N.J.M. Source-sink regulation in crops under water deficit // Trends Plant Sci. 2019. Vol. 24, N. 7. P. 652–663. doi: 10.1016/J.TPLANTS.2019.04.005
- Karlova R., Boer D., Hayes S., Testerink C. Root plasticity under abiotic stress // Plant Physiol. 2021. Vol. 187, N. 3. ID 1057. doi: 10.1093/PLPHYS/KIAB392
- Dinneny J.R. Developmental responses to water and salinity in root systems // Annu Rev Cell Dev Biol. 2019. Vol. 35. P. 239–257. doi: 10.1146/ANNUREV-CELLBIO-100617-062949
- Robbins N.E., Dinneny J.R. Growth is required for perception of water availability to pattern root branches in plants // PNAS USA. 2018. Vol. 115, N. 4. P. E822–E831. doi: 10.1073/PNAS.1710709115
- Bailey-Serres J., Parker J.E., Ainsworth E.A., et al. Genetic strategies for improving crop yields // Nature. 2019. Vol. 575, N. 7781. P. 109–118. doi: 10.1038/S41586-019-1679-0
- Gupta A., Rico-Medina A., Caño-Delgado A.I. The physiology of plant responses to drought // Science. 2020. Vol. 368, N. 6488. P. 266–269. doi: 10.1126/SCIENCE.AAZ7614
- Chen K., Li G.-J., Bressan R.A., et al. Abscisic acid dynamics, signaling, and functions in plants // J Integr Plant Biol. 2020. Vol. 62, N. 1. P. 25–54. doi: 10.1111/jipb.12899
- Groppa M.D., Benavides M.P. Polyamines and abiotic stress: recent advances // Amino Acids. 2008. Vol. 34, N. 1. P. 35–45. doi: 10.1007/S00726-007-0501-8
- Ozturk M., Turkyilmaz Unal B., García-Caparrós P., et al. Osmoregulation and its actions during the drought stress in plants // Physiol Plant. 2021. Vol. 172, N. 2. P. 1321–1335. doi: 10.1111/PPL.13297
- Hayat S., Hayat Q., Alyemeni M.N., et al. Role of proline under changing environments: a review // Plant Signal Behav. 2012. Vol. 7, N. 11. P. 1456–1466. doi: 10.4161/PSB.21949
- Annunziata M.G., Ciarmiello L.F., Woodrow P., et al. Spatial and temporal profile of glycine betaine accumulation in plants under abiotic stresses // Front Plant Sci. 2019. Vol. 10. ID 230. doi: 10.3389/FPLS.2019.00230
- Kaur H., Manna M., Thakur T., et al. Imperative role of sugar signaling and transport during drought stress responses in plants // Physiol Plant. 2021. Vol. 171, N. 4. P. 833–848. doi: 10.1111/PPL.13364
- Mathan J., Singh A., Ranjan A. Sucrose transport in response to drought and salt stress involves ABA-mediated induction of OsSWEET13 and OsSWEET15 in rice // Physiol Plant. 2021. Vol. 171, N. 4. P. 620–637. doi: 10.1111/PPL.13210
- La V.H., Lee B.-R., Islam T., et al. Antagonistic shifting from abscisic acid- to salicylic acid-mediated sucrose accumulation contributes to drought tolerance in Brassica napus // Environ Exp Bot. 2019. Vol. 162. P. 38–47. doi: 10.1016/J.ENVEXPBOT.2019.02.001
- Shumilina J., Kusnetsova A., Tsarev A., et al. Glycation of plant proteins: Regulatory roles and interplay with sugar signalling? // Int J Mol Sci. 2019. Vol. 20, N. 9. ID 2366. doi: 10.3390/ijms20092366
- Iordachescu M., Imai R. Trehalose biosynthesis in response to abiotic stresses // J Integr Plant Biol. 2008. Vol. 50, N. 10. P. 1223–1229. doi: 10.1111/J.1744-7909.2008.00736.X
- Yuan F., Yang H., Xue Y., et al. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis // Nature. 2014. Vol. 514, N. 7522. P. 367–371. doi: 10.1038/NATURE13593
- Fahad S., Bajwa A.A., Nazir U., et al. Crop production under drought and heat stress: Plant responses and management options // Front Plant Sci. 2017. Vol. 8. ID 1147. doi: 10.3389/FPLS.2017.01147
- Apel K., Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction // Annu Rev Plant Biol. 2004. Vol. 55. P. 373–379. doi: 10.1146/ANNUREV.ARPLANT.55.031903.141701
- Sun Z., Li S., Chen W., et al. Plant dehydrins: Expression, regulatory networks, and protective roles in plants challenged by abiotic stress // Int J Mol Sci. 2021. Vol. 22, N. 23. ID 12619. doi: 10.3390/IJMS222312619
- Priya M., Dhanker O.P., Siddique K.H.M., et al. Drought and heat stress-related proteins: an update about their functional relevance in imparting stress tolerance in agricultural crops // Theor Appl Genet. 2019. Vol. 132, N. 6. P. 1607–1638. doi: 10.1007/S00122-019-03331-2
- Kalogeropoulos N., Chiou A., Ioannou M., et al. Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries // Food Chem. 2010. Vol. 121, N. 3. P. 682–690. doi: 10.1016/J.FOODCHEM.2010.01.005
- Robinson G.H.J., Balk J., Domoney C. Improving pulse crops as a source of protein, starch and micronutrients // Nutr Bull. 2019. Vol. 44, N. 3. ID 202. doi: 10.1111/NBU.12399
- Stagnari F., Maggio A., Galieni A., Pisante M. Multiple benefits of legumes for agriculture sustainability: an overview // Chem Biol Technol Agric. 2017. Vol. 4. ID 2. doi: 10.1186/S40538-016-0085-1
- Jensen E.S., Peoples M.B., Boddey R.M., et al. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review // Agron Sustain Dev. 2012. Vol. 32, N. 2. P. 329–364. doi: 10.1007/S13593-011-0056-7
- Preissel S., Reckling M., Schläfke N., Zander P. Magnitude and farm-economic value of grain legume pre-crop benefits in Europe: A review // Field Crops Res. 2015. Vol. 175. P. 64–79. doi: 10.1016/J.FCR.2015.01.012
- St. Luce M., Grant C.A., Zebarth B.J., et al. Legumes can reduce economic optimum nitrogen rates and increase yields in a wheat-canola cropping sequence in Western Canada // Field Crops Res. 2015. Vol. 179. P. 12–25. doi: 10.1016/J.FCR.2015.04.003
- Nadeem M., Li J., Yahya M., et al. Research progress and perspective on drought stress in legumes: A review // Int J Mol Sci. 2019. Vol. 20, N. 10. ID 2541. doi: 10.3390/IJMS20102541
- Ullah A., Farooq M. The challenge of drought stress for grain legumes and options for improvement // Arch Agron Soil Sci. 2022. Vol. 68, N. 11. P. 1601–1618. doi: 10.1080/03650340.2021.1906413
- Farooq M., Gogoi N., Barthakur S., et al. Drought stress in grain legumes during reproduction and grain filling // J Agron Crop Sci. 2017. Vol. 203, N. 2. P. 81–102. doi: 10.1111/JAC.12169
- Busse M.D., Bottomley P.J. Growth and nodulation responses of Rhizobium meliloti to water stress induced by permeating and nonpermeating solutes // Appl Environ Microbiol. 1989. Vol. 55, N. 10. ID 2431. doi: 10.1128/AEM.55.10.2431-2436.1989
- Guerin V., Trinchant J.C., Rigaud J. Nitrogen fixation (C2H2 reduction) by broad bean (Vicia faba L.) Nodules and bacteroids under water-restricted conditions // Plant Physiol. 1990. Vol. 92, N. 3. P. 595–601. doi: 10.1104/PP.92.3.595
- Davis L.C., Imsande J. Direct test for altered gas exchange rates in water-stressed soybean nodules // Ann Bot. 1988. Vol. 61, N. 2. P. 169–177. doi: 10.1093/oxfordjournals.aob.a087539
- Purcell L.C., King C.A. Drought and nitrogen source effects on nitrogen nutrition, seed growth, and yield in soybean // J Plant Nutr. 2008. Vol. 19, N. 6. P. 969–993. doi: 10.1080/01904169609365173
- Du Y., Zhao Q., Chen L., et al. Effect of drought stress at reproductive stages on growth and nitrogen metabolism in soybean // Agronomy. 2020. Vol. 10, N. 2. ID 302. doi: 10.3390/AGRONOMY10020302
- Alghamd S.S. Chemical composition of FABA bean (Vicia faba L.) genotypes under various water regimes // Pakistan J Nutr. 2009. Vol. 8, N. 4. P. 477–482. doi: 10.3923/PJN.2009.477.482
- Ibrahim S.A., Hala K. Growth, yield and chemical constituents of soybean (Glycin max L.) plants as affect by plant spacing under different irrigation intervals // Res J Agric Biol Sci. 2007. Vol. 3, N. 6. P. 657–663.
- Hossein Behboudian M., Qifu M., Turner N.C., Palta J.A. Reactions of chickpea to water stress: yield and seed composition // J Sci Food Agric. 2001. Vol. 81, N. 13. P. 1288–1291. doi: 10.1002/JSFA.939
- Hummel M., Hallahan B.F., Brychkova G., et al. Reduction in nutritional quality and growing area suitability of common bean under climate change induced drought stress in Africa // Sci Rep. 2018. Vol. 8. ID 16187. doi: 10.1038/s41598-018-33952-4
- Mansourifar C., Shaban M., Ghobadi M., Ajirlu A.R. Effect of drought stress and N fertilizer on yield, yield components and grain storage proteins in chickpea (Cicer arientum L.) cultivars // Afr J Agron. 2021. Vol. 9, N. 1. P. 1–9.
- Khalil S.E., Ismael E.G. Growth, yield and seed quality of Lupinus termis as affected by different soil moisture levels and different ways of yeast application // J Am Sci. 2010. Vol. 6, N. 8. P. 141–153.
- Dwivedi S.L., Nigam S.N., Nageswara Rao R.C., et al. Effect of drought on oil, fatty acids and protein contents of groundnut (Arachis hypogaea L.) seeds // Field Crops Res. 1996. Vol. 48, N. 2–3. P. 125–133. doi: 10.1016/S0378-4290(96)01027-1
- Kirnak H., Dogan E., Turkoglu H. Effect of drip irrigation intensity on soybean seed yield and quality in the semi arid Harran plain, Turkey // Span J Agric Res. 2010. Vol. 8, N. 4. P. 1208–1217. doi: 10.5424/SJAR/2010084-1239
- Bellaloui N., Mengistu A., Kassem M.A., et al. Effects of genetics and environment on fatty acid stability in soybean seed // Food Nutr Sci. 2013. Vol. 4, N. 9. P. 165–175. doi: 10.4236/FNS.2013.49A1024
- Gebeyehu S., Wiese H., Schubert S. Effects of drought stress on seed sink strength and leaf protein patterns of common bean genotypes // Afr Crop Sci J. 2010. Vol. 18, N. 2. P. 75–88. doi: 10.4314/ACSJ.V18I2.65799
- Sehgal A., Sita K., Bhandari K., et al. Influence of drought and heat stress, applied independently or in combination during seed development, on qualitative and quantitative aspects of seeds of lentil (Lens culinaris Medikus) genotypes, differing in drought sensitivity // Plant Cell Environ. 2019. Vol. 42, N. 1. P. 198–211. doi: 10.1111/PCE.13328
- Nakagawa A.C.S., Itoyama H., Ariyoshi Y., et al. Drought stress during soybean seed filling affects storage compounds through regulation of lipid and protein metabolism // Acta Physiol Plant. 2018. Vol. 40, N. 6. ID 111. doi: 10.1007/S11738-018-2683-Y
- Rozrokh M., Sabaghpour S.H., Armin M., Asgharipour M. The effects of drought stress on some biochemical traits in twenty genotypes of chickpea // Eur J Exp Biol. 2012. Vol. 2. P. 1980–1987.
- El Haddad N., Choukri H., Ghanem M.E., et al. High-temperature and drought stress effects on growth, yield and nutritional quality with transpiration response to vapor pressure deficit in lentil // Plants. 2022. Vol. 11, N. 1. ID 95. doi: 10.3390/PLANTS11010095/S1
- Ellis N., Hattori C., Cheema J., et al. NMR metabolomics defining genetic variation in pea seed metabolites // Front Plant Sci. 2018. Vol. 9. ID 367950. doi: 10.3389/FPLS.2018.01022
- Farooq M., Hussain M., Usman M., et al. Impact of abiotic stresses on grain composition and quality in food legumes // J Agric Food Chem. 2018. Vol. 66, N. 34. P. 8887–8897. doi: 10.1021/acs.jafc.8b02924
- Langridge P., Reynolds M. Breeding for drought and heat tolerance in wheat // Theor Appl Genet. 2021. Vol. 134, N. 6. P. 1753–1769. doi: 10.1007/S00122-021-03795-1
- Wang J., Li C., Li L., et al. Exploitation of drought tolerance-related genes for crop improvement // Int J Mol Sci. 2021. Vol. 22, N. 19. ID 10265. doi: 10.3390/IJMS221910265
- McMillen M.S., Mahama A.A., Sibiya J., et al. Improving drought tolerance in maize: Tools and techniques // Front Genet. 2022. Vol. 13. ID 1001001. doi: 10.3389/FGENE.2022.1001001
- Farooq M., Wahid A., Kobayashi N., et al. Plant drought stress: effects, mechanisms and management // Agron Sustain Dev. 2009. Vol. 29, N. 1. P. 185–212. doi: 10.1051/AGRO:2008021
- Bodner G., Nakhforoosh A., Kaul H.-P. Management of crop water under drought: a review // Agron Sustain Dev. 2015. Vol. 35, N. 2. P. 401–442. doi: 10.1007/S13593-015-0283-4
- Ford K.L., Cassin A., Bacic A. Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance // Front Plant Sci. 2011. Vol. 2. ID 44. doi: 10.3389/FPLS.2011.00044
- Deen S., Amist N., Singh N.B. PEG imposed water deficit and physiological alterations in hydroponic cabbage // Iran J Plant Physiol. 2016. Vol. 6, N. 2. P. 1651–1658.
- Ji H., Liu L., Li K., et al. PEG-mediated osmotic stress induces premature differentiation of the root apical meristem and outgrowth of lateral roots in wheat // J Exp Bot. 2014. Vol. 65, N. 17. P. 4863–4872. doi: 10.1093/JXB/ERU255
- Chen T., Fluhr R. Singlet oxygen plays an essential role in the root’s response to osmotic stress // Plant Physiol. 2018. Vol. 177, N. 4. P. 1717–1727. doi: 10.1104/PP.18.00634
- Van Der Weele C.M., Spollen W.G., Sharp R.E., Baskin T.I. Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media // J Exp Bot. 2000. Vol. 51, N. 350. P. 1555–1562. doi: 10.1093/JEXBOT/51.350.1555
- Frolov A., Bilova T., Paudel G., et al. Early responses of mature Arabidopsis thaliana plants to reduced water potential in the agar-based polyethylene glycol infusion drought mode // J Plant Physiol. 2017. Vol. 208. P. 70–83. doi: 10.1016/j.jplph.2016.09.013
- Paudel G., Bilova T., Schmidt R., et al. Osmotic stress is accompanied by protein glycation in Arabidopsis thaliana // J Exp Bot. 2016. Vol. 67, N. 22. P. 6283–6295. doi: 10.1093/jxb/erw395
- Leonova T., Shumilina J., Kim A., et al. Agar-based polyethylene glycol (PEG) infusion model for pea (Pisum sativum L.) — perspectives of translation to legume crop plants // Biol Commun. 2022. Vol. 67, N. 3. P. 236–244. doi: 10.21638/spbu03.2022.309
- Koskosidis A., Khah E., Mavromatis A., et al. Effect of PEG-induced drought stress on germination of ten chickpea (Cicer arietinum L.) genotypes // Not Bot Horti Agrobot Cluj Napoca. 2020. Vol. 48, N. 1. P. 294–304. doi: 10.15835/NBHA48111799
- Foti C., Kalampokis I.F., Aliferis K.A., Pavli O.I. Metabolic responses of two contrasting lentil genotypes to PEG-Induced drought stress // Agronomy. 2021. Vol. 11, N. 6. ID 1190. doi: 10.3390/AGRONOMY11061190
- Yang Z.-B., Eticha D., Rotter B., et al. Physiological and molecular analysis of polyethylene glycol-induced reduction of aluminium accumulation in the root tips of common bean (Phaseolus vulgaris) // New Phytol. 2011. Vol. 192, N. 1. P. 99–113. doi: 10.1111/J.1469-8137.2011.03784.X
- Fang P., Li M., Guo Q., et al. Genome-wide analysis of the SMXL gene family in common bean and identification of karrikin-responsive PvSMXL2 as a negative regulator of PEG-induced drought stress // Gene. 2023. Vol. 887. ID 147741. doi: 10.1016/J.GENE.2023.147741
- Leonova T., Popova V., Tsarev A., et al. Does protein glycation impact on the drought-related changes in metabolism and nutritional properties of mature pea (Pisum sativum L.) seeds? // Int J Mol Sci. 2020. Vol. 21, N. 2. ID 567. doi: 10.3390/ijms21020567
- Bündig C., Vu T.H., Meise P., et al. Variability in osmotic stress tolerance of starch potato genotypes (Solanum tuberosum L.) as revealed by an in vitro screening: role of proline, osmotic adjustment and drought response in pot trials // J Agron Crop Sci. 2017. Vol. 203, N. 3. P. 206–218. doi: 10.1111/JAC.12186
- Jahan M.S., Zhao C.J., Shi L.B., et al. Physiological mechanism of melatonin attenuating to osmotic stress tolerance in soybean seedlings // Front Plant Sci. 2023. Vol. 14. ID 1193666. doi: 10.3389/FPLS.2023.1193666
- Shivakrishna M.P., Reddy A.K., Rao D.M. Effect of PEG-6000 imposed drought stress on RNA content, relative water content (RWC), and chlorophyll content in peanut leaves and roots // Saudi J Biol Sci. 2018. Vol. 25, N. 2. P. 285–289. doi: 10.1016/J.SJBS.2017.04.008
- Muscolo A., Junker A., Klukas C., et al. Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions // J Exp Bot. 2015. Vol. 66, N. 18. ID 5467. doi: 10.1093/JXB/ERV208
- Ramalingam A., Kudapa H., Pazhamala L.T., et al. Proteomics and metabolomics: Two emerging areas for legume improvement // Front Plant Sci. 2015. Vol. 6. ID 165222. doi: 10.3389/FPLS.2015.01116
- Weckwerth W. Unpredictability of metabolism — the key role of metabolomics science in combination with next-generation genome sequencing // Anal Bioanal Chem. 2011. Vol. 400, N. 7. ID 1967–1978. doi: 10.1007/S00216-011-4948-9
- Bouchnak I., Brugière S., Moyet L., et al. Unraveling hidden components of the chloroplast envelope proteome: Opportunities and limits of better MS sensitivity // Mol Cell Proteom. 2019. Vol. 18, N. 7. P. 1285–1306. doi: 10.1074/MCP.RA118.000988
- Yang Y., Saand M.A., Huang L., et al. Applications of multi-omics technologies for crop improvement // Front Plant Sci. 2021. Vol. 12. ID 563953. doi: 10.3389/FPLS.2021.563953
- Li H., Yang M., Zhao C., et al. Physiological and proteomic analyses revealed the response mechanisms of two different drought-resistant maize varieties // BMC Plant Biol. 2021. Vol. 21. ID 513. doi: 10.1186/S12870-021-03295-W
- Yahoueian S.H., Bihamta M.R., Babaei H.R., Bazargani M.M. Proteomic analysis of drought stress response mechanism in soybean (Glycine max L.) leaves // Food Sci Nutr. 2021. Vol. 9, N. 4. P. 2010–2020. doi: 10.1002/FSN3.2168
- Gupta S., Mishra S.K., Misra S., et al. Revealing the complexity of protein abundance in chickpea root under drought-stress using a comparative proteomics approach // Plant Physiol Biochem. 2020. Vol. 151. P. 88–102. doi: 10.1016/J.PLAPHY.2020.03.005
- Kottapalli K.R., Zabet-Moghaddam M., Rowland D., et al. Shotgun label-free quantitative proteomics of water-deficit-stressed midmature peanut (Arachis hypogaea L.) seed // J Proteome Res. 2013. Vol. 12, N. 11. P. 5048–5057. doi: 10.1021/PR400936D
- Poza-Viejo L., Redondo-Nieto M., Matías J., et al. Shotgun proteomics of quinoa seeds reveals chitinases enrichment under rainfed conditions // Sci Rep. 2023. Vol. 13, N. 1. ID 4951. doi: 10.1038/s41598-023-32114-5
- Farag M.A., Sharaf El-Din M.G., Selim M.A., et al. Nuclear magnetic resonance metabolomics approach for the analysis of major legume sprouts coupled to chemometrics // Molecules. 2021. Vol. 26, N. 3. ID 761. doi: 10.3390/MOLECULES26030761
- Fayek N.M., Mekky R.H., Dias C.N., et al. UPLC-MS metabolome-based seed classification of 16 vicia species: A prospect for phyto-equivalency and chemotaxonomy of different accessions // J Agric Food Chem. 2021. Vol. 69, N. 17. P. 5252–5266. doi: 10.1021/ACS.JAFC.0C06054/SUPPL_FILE/JF0C06054_SI_001.PDF
- Gundaraniya S.A., Ambalam P.S., Tomar R.S. Metabolomic profiling of drought-tolerant and susceptible peanut (Arachis hypogaea L.) genotypes in response to drought stress // ACS Omega. 2020. Vol. 5, N. 48. P. 31209–31219. doi: 10.1021/ACSOMEGA.0C04601
- Subramani M., Urrea C.A., Kalavacharla V. Comparative analysis of untargeted metabolomics in tolerant and sensitive genotypes of common bean (Phaseolus vulgaris L.) seeds exposed to terminal drought stress // Metabolites. 2022. Vol. 12, N. 10. ID 944. doi: 10.3390/METABO12100944/S1
Дополнительные файлы
