Bacterial genera associated with nitrogen cycle in microbial communities of chernozems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Reactions associated with the geochemical nitrogen cycle occurring in the soil have a decisive effect on the level of nitrogen availability for green plants. Microorganisms that catalyze them are of interest from the point of view of developing mechanisms for managing soil fertility. In this paper, we focused on bacterial genera associated with nitrogen cycle processes in chernozem soils of the Belgorod Region of Russia.

AIM: To determine the list and quantitative ratios of bacterial genera whose representatives are able to participate in the fixation of atmospheric nitrogen, nitrification and denitrification in the chernozems of the forest-steppe zone of the European part of Russia.

MATERIALS AND METHODS: Samples of arable and non-arable chernozems of three subtypes were collected in June and August 2022. Microbiological profiling based on high-throughput sequencing of amplicons of V3 and V4 region of the 16S rRNA gene with subsequent computational processing of the results was used in the work.

RESULTS: 6 genera of nitrogen-fixing bacteria were found, as well as a group undifferentiated by means of the method used, including genus Rhizobium. 8 genera involved in the first and 5 genera involved in the second stage of nitrification were also found. 7 genera have been found whose representatives are capable of denitrification, without taking into account nitrogen-fixing bacteria, which are also capable of carrying out this process.

CONCLUSIONS: Among the bacteria capable of fixing atmospheric nitrogen in the chernozems of the Belgorod region, the genus Bradyrhizobium dominates. Among the nitrifiers performing the first stage of nitrification, Ellin6067 and MND1 from the family Nitrosomonadaceae predominate. The second stage of nitrification is carried out mainly by bacteria of the genus Nitrospira. Of the potential denitrifies, along with nitrogen-fixing genera possessing this ability, representatives of the genera Rubrobacter and Pseudomonas are the most numerous. The study does not claim to give a complete list of organisms that carry out key chemical transformations of nitrogen compounds in chernozems, however, it allows us to name their important participants.

About the authors

Konstantin S. Boyarshin

Belgorod State University

Email: ulmus-04@yandex.ru
ORCID iD: 0000-0002-2960-0670
SPIN-code: 6002-9327
Scopus Author ID: 57218822292
ResearcherId: HJZ-5162-2023

Cand. Sci. (Biology)

Russian Federation, Belgorod

Valeria V. Adamova

Belgorod State University

Email: adamova@bsu.edu.ru
ORCID iD: 0000-0001-8329-4670

Cand. Sci. (Biology)

Russian Federation, Belgorod

Wentao Zheng

Belgorod State University

Email: zhengwentaoo@126.com
ORCID iD: 0009-0003-3460-8401
Russian Federation, Belgorod

Ekaterina V. Nikitinskaya

Cherepovets State University

Email: nikitinskajacat@yandex.ru
Russian Federation, Cherepovets

Olga Y. Obukhova

Belgorod State University

Email: 1064261@bsu.edu.ru
ORCID iD: 0009-0007-5139-0394
Russian Federation, Belgorod

Marina V. Kolkova

Belgorod State University

Email: mvk3105@mail.ru
ORCID iD: 0009-0008-3849-3564
Russian Federation, Belgorod

Olga S. Bespalova

Belgorod State University

Email: olga9078@mail.ru
Russian Federation, Belgorod

Violetta V. Klyueva

Belgorod State University

Email: klyueva@bsu.edu.ru
ORCID iD: 0000-0002-9509-5115
Russian Federation, Belgorod

Kristina A. Degtyareva

Belgorod State University

Email: degtyareva@bsu.edu.ru
ORCID iD: 0000-0003-4474-0919
Russian Federation, Belgorod

Lubov V. Nesteruk

Belgorod State University

Email: nesteruk@bsu.edu.ru
ORCID iD: 0000-0003-3189-8178

Cand. Sci. (Biology)

Russian Federation, Belgorod

Yulia N. Kurkina

Belgorod State University

Email: kurkina@bsu.edu.ru
ORCID iD: 0000-0001-9180-1257

Cand. Sci. (Biology)

Russian Federation, Belgorod

Olesya A. Makanina

Belgorod State University

Email: makanina@bsu.edu.ru
ORCID iD: 0009-0006-7571-2493

Cand. Sci. (Biology)

Russian Federation, Belgorod

Elena S. Ivanova

Cherepovets State University

Email: stepinaelena@yandex.ru
ORCID iD: 0000-0002-6976-1452
Scopus Author ID: 57190344709

Cand. Sci. (Biology)

Russian Federation, Cherepovets

Irina V. Batlutskaya

Belgorod State University

Author for correspondence.
Email: bat@bsu.edu.ru
ORCID iD: 0000-0003-0068-6586

Dr. Sci. (Biology)

Russian Federation, Belgorod

References

  1. Osipov AI. Biological cycling of atmospheric nitrogen. News of the St. Petersburg State Agrarian University. 2016;(42):97–103. EDN: WCIIWH
  2. Kosolapova AV. The doctrine of biosphere. Part II. Biogeochemical cycles. Voronezh: VGPU; 2007. 48 p. (In Russ.)
  3. Ter-Gazaryan GG. Fixation of atmospheric nitrogen. Tiflis: Publication of the State Planning Committee of the ZSFSR; 1926. 159 p. (In Russ.)
  4. Bray SM. Nitrogen metabolism in plants. Moscow: Agropromizdat, 1986. 199 p. (In Russ.)
  5. Kolosov AE, Zhdanova OB, Martusevich AK, Ashikhmin SP. Nitrogen compounds in biomedical sciences. Moscow: Academy of Natural Sciences; 2012. 87 p. (In Russ.)
  6. Kidin VV. Agrochemistry. Moscow: Prospect; 2015. 1033 p. (In Russ.)
  7. Umarov MM, Kurakov AV, Stepanov AL. Microbiological transformation of nitrogen in soil. Moscow: GEOS, 2007. 138 p. (In Russ.)
  8. Alexander M. Denitrifying Bacteria. In: Norman AG, editor. Methods of soil analysis: Part 2 chemical and microbiological properties, 9.2. Madison: American Society of Agronomy, Inc.; 2016. P. 1484–1486. doi: 10.2134/agronmonogr9.2.c52
  9. Shtark OY, Borisov AU, Zhukov VA, et al. Multi-component symbiosis of Legumes with beneficial soil microbes: genetic and evolutionary basis of application in sustainable crop production. Ecological genetics. 2011;9(2):80–94. EDN: OFYTUR doi: 10.17816/ecogen9280-94
  10. Avdeenkov PP, Chistyakov NE. Denitrification mechanism. Science, technology and education. 2019;(4):19–22. EDN: OUNQAJ
  11. Zavalin AA, Alferov AA, Chernova LS. Associative nitrogen fixation and the practice of application of biological products in agricultural crops. Agricultural Chemistry. 2019;(8):83–96. EDN: ELJRHR doi: 10.1134/S0002188119080143
  12. Subbarao GV, Rao IM, Nakahara K, et al. Potential for biological nitrification inhibition to reduce nitrification and N2O emissions in pasture crop-livestock systems. Animal. 2013;7(S2):322–332. doi: 10.1017/S1751731113000761
  13. Bozal-Leorri A, Corrochano-Monsalve M, Arregui LM, et al. Biological and synthetic approaches to inhibiting nitrification in non-tilled Mediterranean soils. Chem Biol Technol Agric. 2021;8:51. doi: 10.1186/s40538-021-00250-7
  14. McCormic S. Rhizobial strain-dependent restriction of nitrogen fixation in a legume-Rhizobium symbiosis. Plant J. 2018;93(1):3–4. doi: 10.1111/tpj.13791
  15. Sheudzhen АKh, Koltsov SA, Gutorova ОА, et al. Microflora of chernozem leached at long application of fertilizers. International research journal. 2008;56(2):89–94. doi: 10.23670/IRJ.2017.56.067
  16. Blagoveshchenskaya GG, Zavalin AA, Lukin SM. Nitrogen cycle microbocenosis in soil under application of a new form of nitrogen fertiliser. Plodorodie. 2009. № 1. С. 30. EDN: KYVBRB
  17. Krutylo DV, Zotov VS. Genotypic analysis of nodule bacteria nodulating soybean in Ukraine soils. Ecological genetics. 2013;11(4): 86–95. EDN: RXLUSP doi: 10.17816/ecogen11486-95
  18. Semyonov MV. Biomass and taxonomic structure of archaea and bacteria in soils of natural and agricultural ecosystems [dissertation]. Moscow, 2016. (In Russ.)
  19. Artamonova VS, Bortnikova SB. The status of nitrogen-fixing bacteria in soils of urban forest. Bulletin of Perm University. Biology. 2016;(2):150–159. EDN: WEIAVT
  20. Ilinova MI. Change of properties of chernozems and solonts of Stavropol upland under agricultural use [dissertation]. Krasnodar, 2016. (In Russ.)
  21. Panchishkina MB. Dynamics of different bacterial populations in soils [dissertation abstract]. Moscow, 1987. (In Russ.)
  22. Wei W, Isobe K, Nishizawa T, et al. Higher diversity and abundance of denitrifying microorganisms in environments than considered previously. ISME J. 2015;9(9):1954–1965. doi: 10.1038/ismej.2015.9
  23. Rosch C, Mergel A, Bothe H. Biodiversity of denitrifying and dinitrogen-fixing bacteria in anacid forest soil. Appl Environ Microbiol. 2002;68:3818–3829. doi: 10.1128/AEM.68.8.3818
  24. Shaw LJ, Nicol GW, Smith Z, et al. Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway. Environ Microbiol. 2006;8(2):214–222. doi: 10.1111/j.1462-2920.2005.00882.x
  25. Boyarshin KS, Adamova VV, Zheng W, et al. The effect of long-term agricultural use on the bacterial microbiota of chernozems of the forest-steppe zone. Diversity. 2023;15(2):191. doi: 10.3390/d15020191
  26. Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952;47(260):583–621. doi: 10.2307/2280779
  27. Jordan DC. Transfer of rhizobium japonicum buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol. 1982;32(1): 136–139. doi: 10.1099/00207713-32-1-136
  28. Frank B. Ueber die pilzsymbiose der leguminosen. Ber Deut Bot Ges. 1889;7(8):332–346. doi: 10.1111/j.1438-8677.1889.tb05711.x
  29. Jarvis BDW, Van Berkum P, Chen WX, et al. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol. 1997;47(3):895–898. doi: 10.1099/00207713-47-3-895
  30. Mousavi SA, Österman J, Wahlberg N, et al. Phylogeny of the Rhizobium–Allorhizobium–Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol. 2014;37(3):208–215. doi: 10.1016/j.syapm.2013.12.007
  31. Beijerinck MW. Über oligonitrophile Mikroben. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. 1901;7:561–582.
  32. Xie C-H, Yokota A. Reclassification of Alcaligenes latus strains IAM 12599T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov., comb. nov., Azohydromonas australica sp. nov. and Pelomonas saccharophila gen. nov., comb. nov., respectively. Int J Syst Evol Microbiol. 2005;55(6):2419–2425. doi: 10.1099/ijs.0.63733-0
  33. Hippe H. Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992). Int J Syst Evol Microbiol. 2000;50(2): 501–503. doi: 10.1099/00207713-50-2-501
  34. Prosser J, Head IM, Stein LY. The Family Nitrosomonadaceae. In: Rosenberg E, DeLong EF, Lory S, et al editors. The prokaryotes: Alphaproteobacteria and Betaproteobacteria. Berlin, Heidelberg: Springer Berlin/Heidelberg, 2013. P. 901–918. doi: 10.1007/978-3-642-30197-1_372
  35. Watson SW, Bock E, Valois FW, et al. Nitrospira marina gen. nov., sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Arch Microbiol. 1986;144:1–7. doi: 10.1007/BF00454947
  36. Sly LI, Stackebrandt E. Description of Skermanella parooensis gen. nov., sp. nov. to accommodate Conglomeromonas largomobilis subsp. parooensis following the transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum. Int J Syst Bacteriol. 1999;49(2):541–544. doi: 10.1099/00207713-49-2-541
  37. Stieglmeier M, Klingl A, Alves RJE, et al. Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota. Int J Syst Evol Microbiol. 2014;64(8):2738–2752. doi: 10.1099/ijs.0.063172-0
  38. Wu F, Zhang Y, He D, et al. Community structures of bacteria and archaea associated with the biodeterioration of sandstone sculptures at the Beishiku Temple. Int Biodeterior Biodegr. 2021;164:105290. doi: 10.1016/j.ibiod.2021.105290
  39. Holmes AJ, Tujula NA, Holley M, et al. Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia. Environ Microbiol. 2001;3(4):256–264. doi: 10.1046/j.1462-2920.2001.00187.x
  40. Sorokin DY, Vejmelkova D, Lucker S, et al. Nitrolancea hollandica gen. nov., sp. nov., a chemolithoautotrophic nitrite-oxidizing bacterium isolated from a bioreactor belonging to the phylum Chloroflexi. Int J Syst Evol Microbiol. 2014;64(6):1859–1865. doi: 10.1099/ijs.0.062232-0
  41. Winogradsky S. Contributions à la morphologie des organismes de la nitrification. Arkhiv Biologicheskikh Nauk (St. Petersbourg). 1892;(1):87–137.
  42. Pranamuda H, Tokiwa Y, Tanaka H. Polylactide degradation by an Amycolatopsis sp. Appl Environ Microbiol. 1997;63(4):1637–1640. doi: 10.1128/AEM.63.4.1637-1640.1997
  43. Horsley RW, Roscoe JV, Talling IB. Nitrate reduction by Pseudomonas spp.: antagonism by fermentative bacteria. J Appl Bacteriol. 1982;52(1):57–66. doi: 10.1111/j.1365-2672.1982.tb04373.x
  44. Mantelin S, Desbrosses G, Larcher M, et al. Nitrate-dependent control of root architecture and N nutrition are altered by a plant growth-promoting Phyllobacterium sp. Planta. 2006;223(3):591–603. doi: 10.1007/s00425-005-0106-y
  45. Cho Y, Lee I, Yang YY, et al. Aureimonas glaciistagni sp. nov., isolated from a melt pond on Arctic sea ice. Int J Syst Evol Microbiol. 2015;65(10):3564–3569. doi: 10.1099/ijsem.0.000453
  46. Torres MJ, Rubia MI, de la Peña TC, et al. Genetic basis for denitrification in Ensifer meliloti. BMC Microbiol. 2014;14:142. doi: 10.1186/1471-2180-14-142
  47. Bambauer A, Rainey FA, Stackebrandt E, Winter J. Characterization of Aquamicrobium defluvii gen. nov. sp. nov., a thiophene-2-carboxylate-metabolizing bacterium from activated sludge. Arch Microbiol. 1998;169(4):293–302. doi: 10.1007/s002030050575
  48. Beijerinck MW, Minkman DCJ. Bildung und verbrauch von stickoxydul durch bakterien. Zentbl Bakteriol Parasitenkd Infektionskr Hyg Abt. II. 1910;25:30–63.
  49. Reed SC, Townsend AR, Cleveland CC, Nemergut DR. Microbial community shifts influence patterns in tropical forest nitrogen fixation. Oecologia. 2010;164:521–531. doi: 10.1007/s00442-010-1649-6
  50. Mirza BS, Potisap C, Nüsslein K, et al. Response of free-living nitrogen-fixing microorganisms to land use change in the Amazon rainforest. Appl Environ Microbiol. 2014;80(1):281–288. doi: 10.1128/AEM.02362-13
  51. Sarkar A, Reinhold-Hurek B. Transcriptional profiling of nitrogen fixation and the role of NifA in the diazotrophic endophyte Azoarcus sp. Strain BH72. PLoS ONE. 2013;9:e86527. doi: 10.1371/journal.pone.0086527
  52. Dobrovolsky GV, Chernov IYu, Bobrov AA, et al. The role of soil in the formation and conservation of biological diversity. Moscow: Partnership of scientific publications KMK; 2011. 273 p. (In Russ.)
  53. Li Y, Zou N, Liang X, et al. Effects of nitrogen input on soil bacterial community structure and soil nitrogen cycling in the rhizosphere soil of Lycium barbarum L. Front Microbiol. 2023;13:1070817. doi: 10.3389/fmicb.2022.1070817
  54. Hayatsu M, Tago K, Saito M. Various players in the nitrogen cycle: Diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci Plant Nutrit. 2008;54(1):33–45. doi: 10.1111/j.1747-0765.2007.00195.x

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Soil sampling points on the territory of the Belgorod Region of Russia

Download (143KB)
3. Fig. 2. The ratio of the abundances of different ecological groups of bacteria — active participants in the nitrogen cycle in the chernozems of the Belgorod Region. Genera belonging to the same families are arranged nearby

Download (303KB)

Copyright (c) 2024 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies