The ability of photochemical decomposition products of the Roundup to induce oxidative stress in bacterial cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: A common non-selective systemic herbicide Roundup (Glyphosate, active ingredient N-phosphonomethylglycine, N-PMG) is used to control perennial weeds. It is necessary to assess the hazard of the products of photochemical decomposition of N-FMG formed under the influence of solar UV and ozone.

AIM: Using lux-biosensors based on Escherichia coli, studying the ability of N-FMG photochemical degradation products to induce oxidative stress in bacterial cells.

MATERIALS AND METHODS: The work used the active substance of the herbicide Roundup N-phosphonomethylglycine (N-PMG), biosensors E. coli (pSoxS-lux), E. coli (pKatG-lux). UV radiation, Mass spectrometry.

RESULTS: Using biosensors, it was shown that the products of photochemical decomposition of N-PMG (2-(N-hydroxymethyl-hydroxyamine) ethanoic acid) cause an increase in the concentration of superoxide anion radical and H2O2 in E. coli cells, which induces oxidative stress in the bacterial cell.

CONCLUSIONS: The photochemical decomposition product of N-PMG (2-(N-hydroxymethyl-hydroxyamine) ethanoic acid) induces the formation of superoxide anion radical and H2O2 in bacterial cells.

About the authors

Elena A. Saratovskikh

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: easar@icp.ac.ru
ORCID iD: 0000-0003-1841-0641
SPIN-code: 4183-7660

Dr. Sci. (Biology)

Russian Federation, Chernogolovka, Moscow Region

Elbek A. Machigov

N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: elbek_machigov@mail.ru
ORCID iD: 0000-0003-2811-6374
SPIN-code: 7382-5408
Russian Federation, Moscow

Andrey I. Yarmolenko

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: andr.yar@bk.ru
ORCID iD: 0009-0008-2736-4118
Russian Federation, Chernogolovka, Moscow Region

Elena V. Shtamm

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: ekochem@yandex.ru
ORCID iD: 0000-0003-2537-2751

Dr. Sci. (Chemistry)

Russian Federation, Moscow

Serikbai K. Abilev

N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences; Lomonosov Moscow State University

Email: abilev@vigg.ru
ORCID iD: 0000-0001-8636-6828
SPIN-code: 4692-4311
Scopus Author ID: 8723003000

Dr. Sci. (Biology)

Russian Federation, Moscow; Moscow

References

  1. Benbrook ChM. Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur. 2016;28(1):3. doi: 10.1186/s12302-016-0070-0
  2. Yablokov AV. Poisonous seasoning. Problems of application of poison chemicals and ways of ecologization of agriculture. Moscow: Mysl, 1990. 125 p. (In Russ.)
  3. Yudanova LA. Pesticides in the environment: analytical review. Novosibirsk: GPNTB SB AS USSR, 1989. 140 p. (In Russ.)
  4. Dubois A, Lacouture L. Bilan de présence des micropolluants dans les milieux aquatiques continentaux Période 2007–2009. Commissariat général au développement durable — Service de l’observation et des statistiques, 2011. (In French)
  5. Emirova DE. Evaluation of the fitotoxic and cytotoxic effects of roundup herbicide. Scientific notes of the Crimean Engineering and Pedagogical University. Series: Biological sciences. 2021;(1):27–34. EDN: EVIUCB
  6. Emirova DE. Phytotoxic effect of the pesticide roundup to seedlings of Zeamays. Man-Nature-Society: Theory and practice of life safety, ecology and valeology. 2018;(4):93–96. EDN: YSRCXR
  7. Spiridonov YuYa, Larina GE, Protasova LD, et al. Long-term application of the herbicide roundup in the central Nonchernozemic zone. Eurasian Soil Science. 2010;(2):29–36. EDN: MBYNAT
  8. epa.gov [Internet]. Glyphosate. U.S. Environmental Protection Agency. Available at: https://www.epa.gov
  9. Kuznetsova EM, Chmil VD. Roundup: environmental behavior and residue levels. Modern problems of toxicology. 2010;(1):87–95. (In Russ.)
  10. Ministry of natural resources and ecology of the Russian Federation, Federal Service for hydrometeorology and environmental monitoring, Federal State Budgetary Institution “NPO „Typhoon”, IPM. State of pesticide pollution of natural environment objects of the Russian Federation in 2017. Obninsk: FGBU NPO Typhoon, 2018. 89 p. (In Russ.)
  11. Aliev ZG, Atovmyan LO, Saratovskikh EA, et al. Synthesis, structure and spectral characteristics of copper complexes with picolinic acid derivatives. Izvestia AS USSR. Series of chemical sciences. 1988;(11):2495–2501. (In Russ.)
  12. Saratovskikh EA. Synthesis of bidentate complexes of 3,6-dichloro-picolinic acid. Izvestia AS USSR. Series of chemical sciences. 1989;(10):2327–2329. (In Russ.)
  13. Dick RE, Quinn JP. Glyphosate — degrading isolates from environmental samples: occurrence and pathways of degradation. Appl Microbiol Biotechnol. 1995;43(3):545–550. doi: 10.1007/BF00218464
  14. Saratovskikh EA, Bokova AI. Influence of herbicides on the population of soil-dwelling collembola. Toxicological review. 2007;(5): 17–23. EDN: ICDSGH
  15. Saratovskikh EA, Kozlova NB, Baikova IS, Stamm EA. Correlation between toxic properties of pollutants and their complexation constants with ATP. Russian Journal of Physical Chemistry B. 2008;27(11):87–92. (In Russ.) EDN: JSKNNB
  16. Samsel A, Seneff S. Glyphosate’s suppression of cytochrome p450 enzymes and amino acid biosynthesis by the gut microbiome: Pathways to modern diseases. Entropy. 2013;15(4):1416–1463. doi: 10.3390/e15041416
  17. Davoren MJ, Schiestl RH. Glyphosate-based herbicides and cancer risk: a post-IARC decision review of potential mechanisms, policy and avenues of research. Carcinogenesis. 2018;39(10):1207–1215. doi: 10.1093/carcin/bgy105.
  18. Séralini G-E, Clair E, Mesnage R, et al. Long term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize. Food Chem Toxicol. 2012;50(11):4221–4231. doi: 10.1016/j.fct.2012.08.005
  19. Medvedev OS. Roundup and its potential impact on human health. Combi-feeds. 2017;(4):61–63. (In Russ.) EDN: YMZNGJ
  20. Kuz’mina VV, Tarleva AF, Sheptitskii VA. Influence of roundup herbicide on the activities of peptidases in the intestines of various fish species. Journal of ichthyology. 2017;57(5):607–613. EDN: ZFQGYX doi: 10.7868/S0042875217050113
  21. Filippov AA, Golovanova IL, Smirnov MS. Effect of roundup herbicide on the temperature characteristics of maltase of the intestinal mucosa in juvenile fish. Inland Water Biology. 2019;(2–1):93–98. EDN: XUWPBS doi: 10.1134/S0320965219020050
  22. Zernova EE. Effect of Roundup on the processes of lipid and protein peroxidation in laboratory mice. Development of scientific, creative and innovative activity of youth. In: Proceedings of the VII All-Russian science and practice extramural conference of young scientists. Lesnikovo: T.S. Maltsev KGSA, 2015. P. 150–151. (In Russ.)
  23. Green D, Goldberger R. Molecular aspects of life. Transl. from Eng. Moscow: Mir, 1968. 400 p. (In Russ.)
  24. Saratovskikh EA, Korshunova LA, Gvozdev RI, Kulikov AV. Inhibition of the nicotinamide adenine dinucleotide-oxidoreductase reaction by herbicides and fungicides of various structures. Russian Chemical Bulletin. 2005;(5):1284–1289. EDN: HSPAWR
  25. Saratovskikh EA, Korshunova LA, Roschupkina OS, Skurlatov YuI. Inhibition of NADH-oxidoreductase by metal compounds. Russian Journal of Physical Chemistry B. 2007;26(8):46–53. (In Russ.) EDN: IAZOMP
  26. Zaahkook SAM, Abd El-Rasheid HG, Ghanem MH, et al. Physiological and oxidative stress biomarkers in the freshwater catfish (Clarias gariepinus) exposed to pendimethalin-based herbicide and recovery with EDTA. Int J Adv Res. 2016;4(10):243–264. doi: 10.21474/IJAR01/1784.
  27. Mesnage R, Ibragim M, Mandrioli D, et al. Comparative toxicogenomics of glyphosate and roundup herbicides by mammalian stem cell-based genotoxicity assays and molecular profiling in sprague-dawley rats. Toxicol Sci. 2022;186(1):83–101. doi: 10.1093/toxsci/kfab143
  28. Saratovskikh EA, Lichina MV, Psyha BL, et al. On the nature of interaction of di- and polynucleotides with some pesticides. Izvestia AS USSR. Series of chemical sciences. 1989;(9):1984–1989. (In Russ.)
  29. Saratovskikh EA, Glaser VM, Kostromina NYu, Kotelevtsev SV. Genotoxicity of the pestiside in Ames test and the possibility to formate the complexeses with DNA. Ecological genetics. 2007;5(3):46–55. EDN: KXHLYT
  30. Marques A, Guilherme S, Gaivão I, et al. Progression of DNA damage induced by a glyphosate-based herbicide in fish (Anguilla anguilla) upon exposure and post-exposure periods — Insights into the mechanisms of genotoxicity and DNA repair. Comp Biochem Physiol C. 2014;166:126–133. doi: 10.1016/j.cbpc.2014.07.009.
  31. Marino M, Mele E, Viggiano A, et al. Pleiotropic outcomes of glyphosate exposure: from organ damage to effects on inflammation, cancer, reproduction and development. Int J Mol Sci. 2021;22(22):12606. doi: 10.3390/ijms222212606
  32. Strilbyska OM, Tsiumpala SA, Kozachyshyn II, et al. The effects of low-toxic herbicide roundup and glyphosate on mitochondria. EXCLI J. 2022;21:183–196. doi: 10.17179/excli2021-4478
  33. Benachour N, Seralini G-E. Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic, and placental cells. Chem Res Toxicol. 2009;22(1):97–105. doi: 10.1021/tx800218n
  34. Swanson NL, Leu AF, Abrahamson J, Wallet BC. Genetically engineered crops, glyphosate and the deterioration on health in the United States of America. J Org Syst. 2014;9:6–37.
  35. Ericsson A. A case-control stady of non-Hodgkin limfoma and exposure tо pesticides. Cancer. 1999;85(6):1353–1360. doi: 10.1002/(SICI)1097–0142(19990315)85:6<1353::AID-CNCR19>3.0.CO;2-1
  36. EFSA. Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA J. 2015;13(11):4302. doi: 10.2903/j.efsa.2015.4302
  37. Guyton KZ, Loomis D, Grosse Y, et al. Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet. 2015;16(5):490–491. doi: 10.1016/S1470-2045(15)70134-8
  38. Ilyushina NA, Averianova NS, Masaltsev GV, Revazova YuA. Comparative investigation of genotoxic activity of glyphosate technical products in the micronucleus test in vivo. Toxicological review. 2018;(4): 24–28. EDN: XYGVRB doi: 10.36946/0869-7922-2018-4-24-28
  39. Egorova OV, Ilyushina NA, Averianova NS, et al. Genotoxic properties of some organophosphate pesticides. Medical Genetics. 2020; 19(9):72–73. EDN: LNQHPW doi: 10.25557/2073-7998.2020.09.72-73
  40. Hishov AS, Makarov DA, Kish LK. Toxic properties and maximum residue levels of glyphosate in food and feed products. J Agric Environ. 2023;3(31):1–9. doi: 10.23649/jae.2023.31.3.002
  41. Vakhterova YaV, Avdeeva LV, Zimens ME, et al. Roundup (glyphosate): Products of photochemical decomposition and their toxicity and genotoxicity. Sustain Chem Pharm. 2023;32:100957. doi: 10.1016/j.scp.2022.100957
  42. Bamba D, Atheba P, Robert D, et al. Photocatalytic degradation of the diuron pesticide. Environ Chem Lett. 2008;6:163–167. doi: 10.1007/s10311-007-0118-x
  43. Feng J, Zheng Z, Luan J, et al. Degradation of diuron in aqueous solution by ozonation. J Environ Sci Health B. 2008;43(7):576–587. doi: 10.1080/03601230802234450
  44. Mahalakshmi M, Arabindoo B, Palanichamy M, et al. Photocatalytic degradation of carbofuran using semiconductor oxides. J Hazard Mater. 2007;143(1–2):204–245. doi: 10.1016/j.jhazmat.2006.09.008
  45. Assalin MR, De Moraes SG, Queiroz SCN, et al. Studies on degradation of glyphosate by several oxidative chemical processes: Ozonation, photolysis and heterogeneous photocatalysis. J Environ Sci Health B. 2010;45(1):89–94. doi: 10.1080/03601230903404598
  46. Roustan A, Aye M, De Meo M, Di Giorgio C. Genotoxicity of mixtures of glyphosate and atrazine and their environmental transformation products before and after photoactivation. Chemosphere. 2014;108:93–100. doi: 10.1016/j.chemosphere.2014.02.079
  47. Manassero A, Passalia C, Negro AC, et al. Glyphosate degradation in water employing the H2O2/UVC process. Water Res. 2010;44(13):3875–3882. doi: 10.1016/j.watres.2010.05.004
  48. Lehninger AL. Biochemistry. Ed. by Baev AA, Varshavsky YaM. Moscow: Mir, 1974. 957 p. (In Russ.)
  49. Sviridova DA, Machigov EA, Igonina EV, et al. Study of the mechanism of dioxidine genotoxicity using lux-biosensorsof Escherichia coli. Radiation biology. Radioecology. 2020;60(6):595–603. EDN: OBOOSR doi: 10.31857/S0869803120060223
  50. Machigov EA, Igonina EV, Sviridova DV, et al. Genotoxic effect of paraquat radiomimetic on Escherichia coli bacteria. Radiation biology. Radioecology. 2022;62(3):240–249. EDN: BCRAAY doi: 10.31857/S0869803122030055
  51. Smirnova SV, Abilev SK, Igonina EV, et al. The effect of deuterium on induction of the ada-regulon with alkylating compounds in the cells of Escherichia coli. Russian Journal of Genetics. 2018;54(8): 915–921. EDN: XVWOWD doi: 10.1134/S001667581808012X
  52. Abilev SK, Igonina EV, Sviridova DA, Smirnova SV. Bacterial lux biosensors in genotoxicological studies. Biosensors. 2023;13(5):511. doi: 10.3390/bios13050511
  53. Igonina EV, Marsova MV, Abilev SK. Lux biosensors: screening biologically active compounds for genotoxicity. Ecological genetics. 2016;14(4):52–62. EDN: XWJLMR doi: 10.17816/ecogen14452-62
  54. Melnikov NN. Pesticides. Chemistry, technology and application. Moscow: Khimiya, 1987. 712 p. (In Russ.)
  55. Snyder CA, Garte SJ, Sellakumar AR, Albert RE. Relationships between the levels of binding to DNA and the carcinogenic potencies in rat nasal mucosa for three alkylating agents. Cancer Lett. 1986;33(2):175–181. doi: 10.1016/0304-3835(86)90022-4
  56. Kotova VY, Manukhov IV, Zavilgelskii GB. Lux-biosensors for detection of SOS-response, heat shock, and oxidative stress. Applied Biochemistry and Microbiology. 2009;(6):16–25. EDN: OFVFXL doi: 10.1134/S0003683810080089
  57. Zavilgelsky GB, Kotova VY, Manukhov IV. Sensor bioluminescent systems based on lux operons for detection of toxic substances. Russian Journal of Physical Chemistry B. 2012;31(10): 15–20. EDN: PDTYIF (In Russ.)
  58. Lebedev AT, Mazur DM, Artaev VB, Tikhonov GY. Better screening of non-target pollutants in complex samples using advanced chromatographic and mass spectrometric techniques. Environ Chem Lett. 2020;18:1753–1760. doi: 10.1007/s10311-020-01037-2
  59. Scholle VD, Rozantsev EG, Prokofiev AI, et al. Study of 2,2,6,6-tetramethyl-4-oxo-1-piperidyl radical by electron paramagnetic resonance method. Izvestia AS USSR. Series of chemical sciences. 1967;(12):2628–2631. (In Russ.)
  60. Girard JE. Fundamentals of environmental chemistry. Moscow: Fizmatlit, 2008. 640 p. (In Russ.)
  61. Fomin VM. Radical-chain oxidation of organic compounds and its inhibition by phenol type inhibitors. Electronic textbook. Nizhny Novgorod: NNGU, 2010. 37 p. (In Russ.)
  62. Piskarev IM, Ivanova IP, Trofimova SV, et al. Formation of peroxynitrite induced by spark plasma radiation. High Energy Chemistry. 2014;48(3):253–256. doi: 10.7868/S0023119714030132
  63. Nathan C, Shiloh MU. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. PNAS USA. 2000;97(16):8841–8848. doi: 10.1073/pnas.97.16.8841

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Chemical formula of N-phosphonomethylglycine

Download (20KB)
3. Fig. 4. Scheme of potential reactions of N-PMG oxidation at α-carbon atom

Download (102KB)
4. Formula 1

Download (5KB)
5. Formula 2

Download (7KB)
6. Formula 3

Download (8KB)
7. Formula 4

Download (8KB)
8. Formula 5

Download (10KB)
9. Formula 6

Download (12KB)
10. Formula 7

Download (46KB)
11. Formula 8

Download (49KB)
12. Formula 9

Download (26KB)
13. Formula 13

Download (19KB)
14. Formula 14

Download (17KB)
15. Fig. 2. Change in the absorption spectrum of the reaction mixture during the photochemical decomposition of an aqueous solution of N-phosphonomethylglycine under the combined influence of UV radiation and ozone over time: 1 — absorption intensity at λ = 212 nm; 2 — 195 nm; 3 — 286 nm; 4 — 258 nm; 5 — 238 nm. According to work [41]

Download (117KB)
16. Fig. 3. Luminescence of pKatG-lux and pSoxS-lux with N-PMGirr in arbitrary units of luminous flux

Download (143KB)
17. Formula 10

Download (17KB)
18. Formula 11

Download (20KB)
19. Formula 12

Download (51KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».