PCR-based genome walking methods (review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review discusses a range of classical and modern methods used to determine the nucleotide sequence of unknown DNA regions flanking known ones. These methods are applied to decipher the regulatory regions of genes, identify integration sites of T-DNA or viruses, and so on, in cases where the use of whole-genome sequencing is not justified. To amplify a DNA segment, a binding site for a primer must be added to the end of the unknown sequence. This can be achieved either by ligating an adapter or by annealing a degenerate primer under gentle conditions, or by looping the DNA fragment so that the target region is surrounded by known sequences. The second important task is to eliminate the inevitable products of nonspecific binding of adapters or degenerate primers, which is often resolved through multiple rounds of nested PCR. Different methods vary significantly in terms of complexity, prevalence, and the availability of required reagents.

About the authors

Elena S. Okulova

Saint Petersburg State University; All-Russian Institute of Plant Protection

Author for correspondence.
Email: elenaok.advert@gmail.com
ORCID iD: 0009-0001-7349-8925
SPIN-code: 7166-0090

Master of Science, Research Associate, Department of Genetics and Biotechnology

Russian Federation, 7/9 Universitetskaya emb., Saint Petersburg, 199034; Saint Petersburg

Mikhail S. Burlakovskiy

Saint Petersburg State University

Email: burmish@yandex.ru
ORCID iD: 0000-0001-6694-0423
SPIN-code: 3679-0860

PhD, Junior Researcher, Department of Genetics and Biotechnology

Russian Federation, 7/9 Universitetskaya emb., Saint Petersburg, 199034

Ludmila A. Lutova

Saint Petersburg State University

Email: la.lutova@gmail.com
ORCID iD: 0000-0001-6125-0757
SPIN-code: 3685-7136
Scopus Author ID: 6603722721

Dr. Sci. (Biol.), professor

Russian Federation, 7/9 Universitetskaya emb., Saint Petersburg, 199034

References

  1. Pei J, Sun T, Wang L, et al. Fusion primer driven racket PCR: A novel tool for genome walking. Front Genet. 2022;13:969840. doi: 10.3389/fgene.2022.969840
  2. Uchiyama T, Watanabe K. Improved inverse PCR scheme for metagenome walking. Biotechniques. 2006;41(2):183–188. doi: 10.2144/000112210
  3. Kotik M. Novel genes retrieved from environmental DNA by polymerase chain reaction: Current genome-walking techniques for future metagenome applications. J Biotechnol. 2009;144(2):75–82. doi: 10.1016/j.jbiotec.2009.08.013
  4. Chang K, Wang Q, Shi X, et al. Stepwise partially overlapping primer-based PCR for genome walking. AMB Express. 2018;8(1):77. doi: 10.1186/s13568-018-0610-7
  5. Ochman H, Gerber AS, Hartl DL. Genetic applications of an inverse polymerase chain reaction. Genetics. 1988;120(3):621–623. doi: 10.1093/genetics/120.3.621
  6. Hui EK-W, Wang P-C, Lo SJ. Strategies for cloning unknown cellular flanking DNA sequences from foreign integrants. Cell Mol Life Sci. 1998;54(12):1403–1411. doi: 10.1007/s000180050262
  7. Kalendar R, Shustov AV, Schulman AH. Palindromic sequence-targeted (PST) PCR, version 2: An advanced method for high-throughput targeted gene characterization and transposon display. Front Plant Sci. 2021;12:691940. doi: 10.3389/fpls.2021.691940
  8. Riley J, Butler R, Ogilvie D, et al. A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucleic Acids Res. 1990;18(10):2887–2890. doi: 10.1093/nar/18.10.2887
  9. Devon RS, Porteous DJ, Brookes AJ. Splinkerettes — improved vectorettes for greater efficiency in PCR walking. Nucleic Acids Res. 1995;23(9):1644–1645. doi: 10.1093/nar/23.9.1644
  10. Lagerstrom M, Parik J, Malmgren H, et al. Capture PCR: efficient amplification of DNA fragments adjacent to a known sequence in human and YAC DNA. Genome Res. 1991;1(2):111–119. doi: 10.1101/gr.1.2.111
  11. Sarkar G, Turner RT, Bolander ME. Restriction-site PCR: a direct method of unknown sequence retrieval adjacent to a known locus by using universal primers. Genome Res. 1993;2(4):318–322. doi: 10.1101/gr.2.4.318
  12. Schmidt M, Hoffmann G, Wissler M, et al. Detection and direct genomic sequencing of multiple rare unknown flanking DNA in highly complex samples. Hum Gene Ther. 2001;12(7):743–749. doi: 10.1089/104303401750148649
  13. Jones DH, Winistorfer SC. Sequence specific generation of a DNA panhandle permits PCR amplication of unknown flanking DNA. Nucleic Acids Res. 1992;20(3):595–600. doi: 10.1093/nar/20.3.595
  14. Hengen PN. Vectorette, splinkerette and boomerang DNA amplification. Trends Biochen Sci. 1995;20(9):372–373. doi: 10.1016/s0968-0004(00)89079-9
  15. Yuanxin Y, Chengcai A, Li L, et al. T-linker-specific ligation PCR (T-linker PCR): an advanced PCR technique for chromosome walking or for isolation of tagged DNA ends. Nucleic Acids Res. 2003;31(12):e68. doi: 10.1093/nar/gng068
  16. O’Malley RC, Alonso JM, Kim CJ, et al. An adapter ligation-mediated PCR method for high-throughput mapping of T-DNA inserts in the Arabidopsis genome. Nat Protoc. 2007;2:2910–2917. doi: 10.1038/nprot.2007.425
  17. Ji J, Braam J. Restriction site extension PCR: A novel method for high-throughput characterization of tagged DNA fragments and genome walking. PLoS ONE. 2010;5(5):10577. doi: 10.1371/journal.pone.0010577
  18. Bae J-H, Sohn J-H. Template-blocking PCR: An advanced PCR technique for genome walking. Anal Biochem. 2010;398(1):112–116. doi: 10.1016/j.ab.2009.11.003
  19. Shyamala V, Ames GF. Genome walking by single-specific-primer polymerase chain reaction: SSP-PCR. Gene. 1989;84(1):1–8. doi: 10.1016/0378-1119(89)90132-7
  20. Parker JD, Rabinovitch PS, Burmer GC. Targeted gene walking polymerase chain reaction. Nucleic Acids Res. 1991;19(11): 3055–3060. doi: 10.1093/nar/19.11.3055
  21. Myrick KV, Gelbart WM. Universal fast walking for direct and versatile determination of flanking sequence. Gene. 2002;284(1–2): 125–131. doi: 10.1016/s0378-1119(02)00384-0
  22. Tan G, Gao Y, Shi M, et al. SiteFinding-PCR: a simple and efficient PCR method for chromosome walking. Nucleic Acids Res. 2005;33(13):e122. doi: 10.1093/nar/gni124
  23. Liu Y-G, Whittier RF. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics. 1995;25(3):674–681. doi: 10.1016/0888-7543(95)80010-j
  24. Zeng T, Zhang D, Li Y, et al. Identification of genomic insertion and flanking sequences of the transgenic drought-tolerant maize line “SbSNAC1-382” using the single-molecule real-time (SMRT) sequencing method. PLoS One. 2020;15(4):e0226455. doi: 10.1371/journal.pone.0226455
  25. Wang Z, Ye S, Li J, et al. Fusion primer and nested integrated PCR (FPNI-PCR): a new high-efficiency strategy for rapid chromosome walking or flanking sequence cloning. BMC Biotechnol. 2011;11:109. doi: 10.1186/1472-6750-11-109
  26. Li H, Ding D, Cao Y, et al. Partially overlapping primer-based PCR for genome walking. PLOS One. 2015;10(3):120139. doi: 10.1371/journal.pone.0120139
  27. Rose TM, Schultz ER, Henikoff JG, et al. Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Res. 1998;26(7):1628–1635. doi: 10.1093/nar/26.7.1628
  28. Levano-Garcia J, Verjovski-Almeida S, da Silva AC. Mapping transposon insertion sites by touchdown PCR and hybrid degenerate primers. Biotechniques. 2005;38(2):225–229. doi: 10.2144/05382ST03
  29. Li F, Fu C, Li Q. A simple genome walking strategy to isolate unknown genomic regions using long primer and RAPD primer. Iran J Biotechnol. 2019;17(2): e2183. doi: 10.21859/ijb.2183
  30. Wang L, Jia M, Li Z, et al. Wristwatch PCR: A versatile and efficient genome walking strategy. Front Bioeng Biotechnol. 2022;10:792848. doi: 10.3389/fbioe.2022.792848
  31. Frohman MA, Dush MK, Martin GR. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. PNAS USA. 1988;85(23): 8998–9002. doi: 10.1073/pnas.85.23.8998
  32. Zhou MY, Gomez-Sanchez CE. Universal TA cloning. Curr Issues Mol Biol. 2000;2(1):1–7.
  33. Rudi K, Fossheim T, Jakobsen KS. Restriction cutting independent method for cloning genomic DNA segments outside the boundaries of known sequences. Biotechniques. 1999;27(6):1170–1172. doi: 10.2144/99276st03
  34. Spalinskas R, Van den Bulcke M, Van den Eede G, Milcamps A. LT-RADE: An efficient user-friendly genome walking method applied to the molecular characterization of the insertion site of genetically modified maize MON810 and rice LLRICE62. Food Anal Methods. 2013;6:705–713. doi: 10.1007/s12161-012-9438-y
  35. Leoni C, Gallerani R, Ceci LR. A genome walking strategy for the identification of eukaryotic nucleotide sequences adjacent to known regions. BioTechniques. 2008;44(2):229–235. doi: 10.2144/000112680
  36. Tsaftaris A, Pasentzis K, Argiriou A. Rolling circle amplification of genomic templates for inverse PCR (RCA–GIP): a method for 5'- and 3'-genome walking without anchoring. Biotechnol Lett. 2010;32: 157–161. doi: 10.1007/s10529-009-0128-9
  37. Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome conformation. Science. 2002;295(5558):1306–1311. doi: 10.1126/science.1067799
  38. Krispil R, Tannenbaum M, Sarusi-Portuguez A, et al. The position and complex genomic architecture of plant T-DNA insertions revealed by 4SEE. Int J Mol Sci. 2020;21:2373. doi: 10.3390/ijms21072373

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Schematic representation of the EPTS/LM-PCR principle (based on Schmidt et al., 2001)
Download (76KB)
3. Figure 2. Schematic representation of the Panhandle-PCR principle (based on Douglas et al., 1992)
Download (113KB)
4. Figure 3. Schematic representation of the boomerang-PCR principle (based on Hengen, 1995)
Download (114KB)
5. Figure 4. Schematic representation of the principle of adapter ligation PCR (based on O'Malley et al., 2007)
Download (121KB)
6. Figure 5. Schematic representation of the principle of restriction site extension PCR (based on Ji et al., 2010)
Download (71KB)
7. Figure 6. Schematic representation of the principle of Template-blocking PCR (based on Bae and Sohn, 2010)
Download (82KB)
8. Figure 7. Schematic representation of the principle of SSP-PCR (based on Shyamala and Ames, 1989)
Download (104KB)
9. Figure 8. Schematic representation of the principle of restriction site PCR (based on Sarkar, Turner and Bolander, 1993)
Download (46KB)
10. Figure 9. Schematic representation of the principle of the FPNI-PCR method (based on Wang et al., 2011)
Download (71KB)
11. Figure 10. Schematic representation of the principle of the SWPOP-PCR method (based on Chang et al., 2018).
Download (77KB)
12. Figure 11. Schematic representation of the principle of the PST-PCR method (based on Kalendar, Shustov and Schulman, 2021)
Download (76KB)
13. Figure 12. Schematic representation of the principle of the SLRA-PCR method (based on Li, Fu and Li, 2019
Download (60KB)
14. Figure 13. Schematic representation of the principle of the FPR-PCR method (based on Pei et al., 2022)
Download (183KB)
15. Figure 14. Schematic representation of the principle of the wristwalch PCR method (based on Wang et al., 2022)
Download (236KB)
16. Figure 15. Schematic representation of the principle of a restriction-independent method for cloning genomic DNA segments beyond known sequences (based on Rudi, Fossheim and Jakobsen, 1999)
Download (102KB)
17. Fig. 1. Schematic representation of the principle of inverted PCR (based on E.K. Hui et al. [6]). Solid line — known DNA sequence; dashed line — unknown DNA region; arrow — primer binding site; white rectangles — restriction sites. DNA is cleaved with a restriction enzyme that does not have a cutting site in the integrating region, looped under conditions favorable for the formation of monomeric rings, and amplified. PCR uses primers in different directions that are complementary to the ends of the integrating fragment.

Download (66KB)
18. Fig. 2. Schematic representation of the principle of ligation-mediated PCR. Solid line — known DNA sequence; dashed line — unknown DNA region; dotted line — amplification product; small arrow — primer binding site; black rectangles — adapter

Download (61KB)
19. Fig. 3. Schematic representation of the vectorette PCR principle (based on E.K. Hui et al. [6]). Solid line — known DNA sequence; dashed line — unknown DNA region; shaded arrow — primer binding site to the vectorette; shaded region — DNA fragment complementary to the primer to the vectorette; black arrow — primer binding site to the target DNA. DNA is cleaved with a restriction enzyme to form a sticky 5' end. Then, a synthetic oligonucleotide (linker), called a vectorette, is ligated to the 5' end. PCR amplification of the DNA fragment is carried out using an internal primer specific for the target DNA and a primer specific for the vectorette.

Download (275KB)
20. Fig. 4. Schematic representation of the structures of the vectorette and splinkerett cassettes (based on E.K. Hui et al. [6])

Download (74KB)
21. Fig. 5. Schematic representation of the principle of capture PCR (CPCR) (based on M. Lagerstrom et al. [10]). Solid line — genomic DNA; black rectangles — adapter; arrow — primer entry site; B — biotin. The first strand is synthesized based on a single gene-specific biotinylated primer, which allows fixation of this fragment on a streptavidin-coated substrate. Unlabeled DNA is removed during washing. The target fragment is amplified with a primer to the adapter and a second specific primer

Download (141KB)
22. Fig. 6. Schematic representation of the T-linker PCR principle (based on Y. Yuanxin et al. [15]). Solid line — known DNA sequence; dashed line — unknown DNA region; arrow — primer binding site; black rectangles — linker; S1, S2, and S3 — specific primers binding to the known sequence of the target molecule; W1 and W2 — walking primers binding to the T-linker sequence; A — A-“tail” of the target molecule; T — T-nucleotide of the T-linker; Δ — expected difference in the amplification products with specific primers S2 and S3 in separated second-cycle reactions

Download (111KB)
23. Fig. 7. General scheme of primer arrangement in PCR with random primers. Solid line — known DNA sequence; dashed line — unknown DNA region; arrows — primer landing sites

Download (57KB)
24. Fig. 8. Schematic representation of the principle of the UFW method (based on K.W. Myrick and W.M. Gelbart [21]). Solid line – known DNA sequence; dashed line – unknown DNA region; dotted line – amplification product; short arrows with numbers – UFW primers, numbered in order of use.

Download (211KB)
25. Fig. 9. Schematic representation of the principle of the SiteFinding PCR method (based on G. Tan et al. [22]). Solid line – known DNA sequence; dashed line – unknown DNA region; arrow – primer binding site; white rectangle – restriction site; GSP – gene-specific primers, SFP – SiteFinding primers

Download (317KB)
26. Fig. 10. Schematic representation of the principle of the TAIL-PCR method (based on Y.-G. Liu et al. [23]). Solid line — known DNA sequence; dashed line — unknown DNA region; arrow — primer binding site; TR1, TR2, TR3 — nested primers complementary to the known sequence; AD — short arbitrary degenerate primers (15–16 bp) with low melting temperature and varying degrees of degeneracy. By alternating the annealing temperature from high (62 to 68 °C) in high-fidelity cycles to low (44 °C) in low-fidelity cycles, the relative efficiency of amplification of specific and non-specific products is thermally controlled

Download (234KB)
27. Fig. 11. Schematic representation of the principle of the POP-PCR method (based on H. Li et al. [26]). Solid line – known DNA sequence; dashed line – unknown DNA region; arrow – primer landing site.

Download (125KB)
28. Fig. 12. Schematic representation of the RCA–GIP principle (based on A. Tsaftaris et al. [36]). Black line – genomic DNA; arrows – random hexamer primers; dotted lines – concatemer copies.

Download (123KB)
29. Fig. 13. Schematic representation of the 4SEE principle. The shaded circle is the region of DNA cross-linking with formaldehyde; the gray line is the sequence of known DNA; the black line is the unknown region of DNA; the white and gray rectangles are restriction sites.

Download (85KB)

Copyright (c) 2024 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies