PCR-based genome walking methods (review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review discusses a range of classical and modern methods used to determine the nucleotide sequence of unknown DNA regions flanking known ones. These methods are applied to decipher the regulatory regions of genes, identify integration sites of T-DNA or viruses, and so on, in cases where the use of whole-genome sequencing is not justified. To amplify a DNA segment, a binding site for a primer must be added to the end of the unknown sequence. This can be achieved either by ligating an adapter or by annealing a degenerate primer under gentle conditions, or by looping the DNA fragment so that the target region is surrounded by known sequences. The second important task is to eliminate the inevitable products of nonspecific binding of adapters or degenerate primers, which is often resolved through multiple rounds of nested PCR. Different methods vary significantly in terms of complexity, prevalence, and the availability of required reagents.

About the authors

Elena S. Okulova

Saint Petersburg State University; All-Russian Institute of Plant Protection

Author for correspondence.
Email: elenaok.advert@gmail.com
ORCID iD: 0009-0001-7349-8925
SPIN-code: 7166-0090

Master of Science, Research Associate, Department of Genetics and Biotechnology

Russian Federation, 7/9 Universitetskaya emb., Saint Petersburg, 199034; Saint Petersburg

Mikhail S. Burlakovskiy

Saint Petersburg State University

Email: burmish@yandex.ru
ORCID iD: 0000-0001-6694-0423
SPIN-code: 3679-0860

PhD, Junior Researcher, Department of Genetics and Biotechnology

Russian Federation, 7/9 Universitetskaya emb., Saint Petersburg, 199034

Ludmila A. Lutova

Saint Petersburg State University

Email: la.lutova@gmail.com
ORCID iD: 0000-0001-6125-0757
SPIN-code: 3685-7136
Scopus Author ID: 6603722721

Dr. Sci. (Biol.), professor

Russian Federation, 7/9 Universitetskaya emb., Saint Petersburg, 199034

References

  1. Pei J, Sun T, Wang L, et al. Fusion primer driven racket PCR: A novel tool for genome walking. Front Genet. 2022;13:969840. doi: 10.3389/fgene.2022.969840
  2. Uchiyama T, Watanabe K. Improved inverse PCR scheme for metagenome walking. Biotechniques. 2006;41(2):183–188. doi: 10.2144/000112210
  3. Kotik M. Novel genes retrieved from environmental DNA by polymerase chain reaction: Current genome-walking techniques for future metagenome applications. J Biotechnol. 2009;144(2):75–82. doi: 10.1016/j.jbiotec.2009.08.013
  4. Chang K, Wang Q, Shi X, et al. Stepwise partially overlapping primer-based PCR for genome walking. AMB Express. 2018;8(1):77. doi: 10.1186/s13568-018-0610-7
  5. Ochman H, Gerber AS, Hartl DL. Genetic applications of an inverse polymerase chain reaction. Genetics. 1988;120(3):621–623. doi: 10.1093/genetics/120.3.621
  6. Hui EK-W, Wang P-C, Lo SJ. Strategies for cloning unknown cellular flanking DNA sequences from foreign integrants. Cell Mol Life Sci. 1998;54(12):1403–1411. doi: 10.1007/s000180050262
  7. Kalendar R, Shustov AV, Schulman AH. Palindromic sequence-targeted (PST) PCR, version 2: An advanced method for high-throughput targeted gene characterization and transposon display. Front Plant Sci. 2021;12:691940. doi: 10.3389/fpls.2021.691940
  8. Riley J, Butler R, Ogilvie D, et al. A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucleic Acids Res. 1990;18(10):2887–2890. doi: 10.1093/nar/18.10.2887
  9. Devon RS, Porteous DJ, Brookes AJ. Splinkerettes — improved vectorettes for greater efficiency in PCR walking. Nucleic Acids Res. 1995;23(9):1644–1645. doi: 10.1093/nar/23.9.1644
  10. Lagerstrom M, Parik J, Malmgren H, et al. Capture PCR: efficient amplification of DNA fragments adjacent to a known sequence in human and YAC DNA. Genome Res. 1991;1(2):111–119. doi: 10.1101/gr.1.2.111
  11. Sarkar G, Turner RT, Bolander ME. Restriction-site PCR: a direct method of unknown sequence retrieval adjacent to a known locus by using universal primers. Genome Res. 1993;2(4):318–322. doi: 10.1101/gr.2.4.318
  12. Schmidt M, Hoffmann G, Wissler M, et al. Detection and direct genomic sequencing of multiple rare unknown flanking DNA in highly complex samples. Hum Gene Ther. 2001;12(7):743–749. doi: 10.1089/104303401750148649
  13. Jones DH, Winistorfer SC. Sequence specific generation of a DNA panhandle permits PCR amplication of unknown flanking DNA. Nucleic Acids Res. 1992;20(3):595–600. doi: 10.1093/nar/20.3.595
  14. Hengen PN. Vectorette, splinkerette and boomerang DNA amplification. Trends Biochen Sci. 1995;20(9):372–373. doi: 10.1016/s0968-0004(00)89079-9
  15. Yuanxin Y, Chengcai A, Li L, et al. T-linker-specific ligation PCR (T-linker PCR): an advanced PCR technique for chromosome walking or for isolation of tagged DNA ends. Nucleic Acids Res. 2003;31(12):e68. doi: 10.1093/nar/gng068
  16. O’Malley RC, Alonso JM, Kim CJ, et al. An adapter ligation-mediated PCR method for high-throughput mapping of T-DNA inserts in the Arabidopsis genome. Nat Protoc. 2007;2:2910–2917. doi: 10.1038/nprot.2007.425
  17. Ji J, Braam J. Restriction site extension PCR: A novel method for high-throughput characterization of tagged DNA fragments and genome walking. PLoS ONE. 2010;5(5):10577. doi: 10.1371/journal.pone.0010577
  18. Bae J-H, Sohn J-H. Template-blocking PCR: An advanced PCR technique for genome walking. Anal Biochem. 2010;398(1):112–116. doi: 10.1016/j.ab.2009.11.003
  19. Shyamala V, Ames GF. Genome walking by single-specific-primer polymerase chain reaction: SSP-PCR. Gene. 1989;84(1):1–8. doi: 10.1016/0378-1119(89)90132-7
  20. Parker JD, Rabinovitch PS, Burmer GC. Targeted gene walking polymerase chain reaction. Nucleic Acids Res. 1991;19(11): 3055–3060. doi: 10.1093/nar/19.11.3055
  21. Myrick KV, Gelbart WM. Universal fast walking for direct and versatile determination of flanking sequence. Gene. 2002;284(1–2): 125–131. doi: 10.1016/s0378-1119(02)00384-0
  22. Tan G, Gao Y, Shi M, et al. SiteFinding-PCR: a simple and efficient PCR method for chromosome walking. Nucleic Acids Res. 2005;33(13):e122. doi: 10.1093/nar/gni124
  23. Liu Y-G, Whittier RF. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics. 1995;25(3):674–681. doi: 10.1016/0888-7543(95)80010-j
  24. Zeng T, Zhang D, Li Y, et al. Identification of genomic insertion and flanking sequences of the transgenic drought-tolerant maize line “SbSNAC1-382” using the single-molecule real-time (SMRT) sequencing method. PLoS One. 2020;15(4):e0226455. doi: 10.1371/journal.pone.0226455
  25. Wang Z, Ye S, Li J, et al. Fusion primer and nested integrated PCR (FPNI-PCR): a new high-efficiency strategy for rapid chromosome walking or flanking sequence cloning. BMC Biotechnol. 2011;11:109. doi: 10.1186/1472-6750-11-109
  26. Li H, Ding D, Cao Y, et al. Partially overlapping primer-based PCR for genome walking. PLOS One. 2015;10(3):120139. doi: 10.1371/journal.pone.0120139
  27. Rose TM, Schultz ER, Henikoff JG, et al. Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Res. 1998;26(7):1628–1635. doi: 10.1093/nar/26.7.1628
  28. Levano-Garcia J, Verjovski-Almeida S, da Silva AC. Mapping transposon insertion sites by touchdown PCR and hybrid degenerate primers. Biotechniques. 2005;38(2):225–229. doi: 10.2144/05382ST03
  29. Li F, Fu C, Li Q. A simple genome walking strategy to isolate unknown genomic regions using long primer and RAPD primer. Iran J Biotechnol. 2019;17(2): e2183. doi: 10.21859/ijb.2183
  30. Wang L, Jia M, Li Z, et al. Wristwatch PCR: A versatile and efficient genome walking strategy. Front Bioeng Biotechnol. 2022;10:792848. doi: 10.3389/fbioe.2022.792848
  31. Frohman MA, Dush MK, Martin GR. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. PNAS USA. 1988;85(23): 8998–9002. doi: 10.1073/pnas.85.23.8998
  32. Zhou MY, Gomez-Sanchez CE. Universal TA cloning. Curr Issues Mol Biol. 2000;2(1):1–7.
  33. Rudi K, Fossheim T, Jakobsen KS. Restriction cutting independent method for cloning genomic DNA segments outside the boundaries of known sequences. Biotechniques. 1999;27(6):1170–1172. doi: 10.2144/99276st03
  34. Spalinskas R, Van den Bulcke M, Van den Eede G, Milcamps A. LT-RADE: An efficient user-friendly genome walking method applied to the molecular characterization of the insertion site of genetically modified maize MON810 and rice LLRICE62. Food Anal Methods. 2013;6:705–713. doi: 10.1007/s12161-012-9438-y
  35. Leoni C, Gallerani R, Ceci LR. A genome walking strategy for the identification of eukaryotic nucleotide sequences adjacent to known regions. BioTechniques. 2008;44(2):229–235. doi: 10.2144/000112680
  36. Tsaftaris A, Pasentzis K, Argiriou A. Rolling circle amplification of genomic templates for inverse PCR (RCA–GIP): a method for 5'- and 3'-genome walking without anchoring. Biotechnol Lett. 2010;32: 157–161. doi: 10.1007/s10529-009-0128-9
  37. Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome conformation. Science. 2002;295(5558):1306–1311. doi: 10.1126/science.1067799
  38. Krispil R, Tannenbaum M, Sarusi-Portuguez A, et al. The position and complex genomic architecture of plant T-DNA insertions revealed by 4SEE. Int J Mol Sci. 2020;21:2373. doi: 10.3390/ijms21072373

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of inverted PCR (based on E.K. Hui et al. [6]). Solid line, known DNA sequence; dashed line, unknown DNA segment; arrow, primer binding site; white rectangles, restriction sites. DNA is cleaved by a restriction enzyme that does not have a cutting site within the insert, then circularized under conditions favorable for the formation of monomeric circles and amplified. In PCR, primers complementary to the ends of the insert fragment are used in opposite directions

Download (152KB)
3. Fig. 2. Schematic representation of PCR mediated by ligation. Solid line, known DNA sequence; dashed line, unknown DNA segment; dotted line, amplification product; small arrow, primer binding site; black rectangles, adapters

Download (230KB)
4. Fig. 3. Schematic representation of the “vectorette PCR” (based on E.K. Hui et al. [6]). Solid line, known DNA sequence; dashed line, unknown DNA segment; hatched arrow, primer binding site to the “vectorette”; hatched segment, DNA fragment complementary to the “vectorette” primer; black arrow, primer binding site to the target DNA. DNA is cleaved by a restriction enzyme, generating a 5'-sticky end. Then, a synthetic oligonucleotide (linker) called “vectorette” is ligated to the 5'-end. PCR amplification of the DNA fragment is performed using an internal primer specific to the target DNA and a primer specific to the “vectorette”

Download (485KB)
5. Fig. 4. Schematic representation of the structures of «vectorette» and «splinkerette» cassettes (based on E.K. Hui et al. [6])

Download (102KB)
6. Fig. 5. Schematic representation of the Capture PCR (CPCR) (based on M. Lagerstrom et al. [10]). Solid line, genomic DNA; black rectangles, adapters; arrow, primer binding site; B, biotin. The first strand is synthesized using a single gene-specific biotinylated primer, enabling the fixation of this fragment on a streptavidin-coated substrate. Unlabeled DNA is removed during washing. The target fragment is then amplified with a primer to the adapter and a second specific primer

Download (205KB)
7. Fig. 6. Schematic representation of the T-linker PCR (based on Y. Yuanxin et al. [15]). Solid line, known DNA sequence; dashed line, unknown DNA segment; arrow, primer binding site; black rectangles, linker; S1, S2, and S3, specific primers binding to the known sequence of the target molecule; W1 and W2, walking primers binding to the T-linker sequence; A, A-”tail” of the target molecule; T, T-nucleotide of the T-linker; Δ, presumed difference in amplification products with specific primers S2 and S3 in separate reactions of the second cycle

Download (456KB)
8. Fig. 7. The general scheme of primer placement in PCR with random primers. Solid line, known DNA sequence; dashed line, unknown DNA segment; arrows, primer binding sites

Download (93KB)
9. Fig. 8. Schematic representation of the UFW method (based on K.W. Myrick and W.M. Gelbart [21]). Solid line, known DNA sequence; dashed line, unknown DNA segment; dotted line, amplification product; short arrows with numbers, UFW primers, numbered in the order of use

Download (459KB)
10. Fig. 9. Schematic representation of the SiteFinding-PCR method principle (based on G. Tan et al. [22]). Solid line: known DNA sequence; dashed line: unknown DNA segment; arrow: primer binding site; white rectangle: restriction site; GSP: gene-specific primers, SFP: SiteFinding primers

Download (599KB)
11. Fig. 10. Schematic representation of the TAIL-PCR method (based on Y.-G. Liu et al. [23]). Solid line, known DNA sequence; dashed line, unknown DNA segment; arrow, primer binding site; TR1, TR2, TR3, nested primers complementary to the known sequence; AD, short arbitrary degenerate primers (15–16 bp) with low melting temperature and varying degrees of degeneracy. Alternating annealing temperatures from high (62 to 68 °C) in high stringency cycles to low (44 °C) in low stringency cycles thermally controls the relative efficiency of amplification of specific and nonspecific products

Download (524KB)
12. Fig. 11. Schematic representation of the POP-PCR (based on H. Li et al. [26]). Solid line, known DNA sequence; dashed line, unknown DNA segment; arrow, primer annealing site

Download (600KB)
13. Fig. 12. Schematic representation of the RCA-GIP method (based on A. Tsaftaris et al. [36]). Black line, genomic DNA; arrows, random hexameric primers; dotted lines, copies of concatemers

Download (273KB)
14. Fig. 13. Schematic representation of the 4SEE principle. Shaded circle, DNA crosslinking region with formaldehyde; gray line, known DNA sequence; black line, unknown DNA segment; white and gray rectangles: restriction sites

Download (332KB)
15. Изображение 1. Схематическое изображение принципа EPTS/LM-PCR (на основе Schmidt et al., 2001)
Download (75KB)
16. Изображение 2. Схематическое изображение принципа «Panhandle»-PCR (на основе Douglas et al., 1992)
Download (113KB)
17. Изображение 3. Схематическое изображение принципа «boomerang»-PCR (на основе Hengen, 1995)
Download (112KB)
18. Изображение 4. Схематическое изображение принципа ПЦР с лигированием адаптера (на основе O'Malley et al., 2007)
Download (121KB)
19. Изображение 5. Схематическое изображение принципа ПЦР с удлинением сайта рестрикции (на основе Ji et al., 2010)
Download (70KB)
20. Изображение 6. Схематическое изображение принципа Template-blocking PCR (на основе Bae and Sohn, 2010)
Download (81KB)
21. Изображение 7. Схематическое изображение принципа SSP-PCR (на основе Shyamala and Ames, 1989)
Download (103KB)
22. Изображение 8. Схематическое изображение принципа ПЦР сайта рестрикции (на основе Sarkar, Turner and Bolander, 1993)
Download (45KB)
23. Изображение 9. Схематическое изображение принципа метода FPNI-PCR (на основе Wang et al., 2011)
Download (71KB)
24. Изображение 10. Схематическое изображение принципа метода SWPOP-PCR (на основе Chang et al., 2018).
Download (77KB)
25. Изображение 11. Схематическое изображение принципа метода PST-PCR (на основе Kalendar, Shustov and Schulman, 2021)
Download (75KB)
26. Изображение 12. Схематическое изображение принципа метода SLRA-PCR (на основе Li, Fu and Li, 2019)
Download (60KB)
27. Изображение 13. Схематическое изображение принципа метода FPR-PCR (на основе Pei et al., 2022)
Download (183KB)
28. Изображение 14. Схематическое изображение принципа метода wristwalch PCR (на основе Wang et al., 2022)
Download (236KB)
29. Изображение 15. Схематическое изображение принципа независимого от рестрикции метода клонирования сегментов геномной ДНК за пределами известных последовательностей (на основе Rudi, Fossheim and Jakobsen, 1999)
Download (101KB)

Copyright (c) 2024 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies