Molecular genetic basis of biofilm formation as a component of Vibrio Cholerae persistence in water reservoirs of Russian Federation

Cover Page

Cite item

Full Text

Abstract

Background. The problem of cholera remains acute for world health service and risks of importation of Vibrio cholerae strains from endemic countries to Russia do exist. Toxigenic strains (carrying cholera toxin genes ctxAB) can cause epidemic outbreaks of cholera and non-toxigenic (ctxAB-) – single or multiple cases of cholera-like diarrhea. Investigation of their ability to survive in water reservoirs in climatic conditions of middle latitudes by means of forming biofilms is essential for potential threat evaluation.

Materials and methods. Biofilm formation by 15 V. cholerae strains on abiotic surfaces was studied in microcosms with tap water and cover glasses. Identification of responsible genetic determinants in whole genome sequences and bioinformatics analysis were performed using BioEdit 7.2.5, BLASTN 2.2.29, Blastp and Vector NTI Advance 11 software.

Results. The strains investigated differed in terms of biofilm formation which correlated with structural features of genes for MSHA pili (msh), matrix polysaccharides (vps) and proteins (rbm) as well as for certain regulatory factors. Strains with none or few genetic deviations from prototypes formed mature biofilms in 5-7 days while those containing truncated genes mshL, mshN, rbmC – only in 13 days. One strain with truncated gene for positive regulator vpsR formed an immature biofilm. Acceleration of the process in some strains up to 2-3 days correlated with either truncated gene hapR (negative regulator) or altered structure of both msh and vps-rbm gene clusters.

Conclusion. Analysis of genetic determinants responsible for biofilm formation may be used for prediction of V. cholerae ability to survive in environmental objects of Russia and thus the potential danger of the latters as sources of infection.

About the authors

Svetlana V. Titova

Rostov-on-Don Research Anti-Plague Institute

Email: titova_sv@antiplague.ru

PhD, Director

Russian Federation, 117/40, Gorkogo street, Rostov-on-Don, 344002

Elena V. Monakhova

Rostov-on-Don Research Anti-Plague Institute

Author for correspondence.
Email: monakhova_ev@antiplague.ru

DPhil, Leading Researcher, Head of Group of Molecular Biology of Vibrio Human Pathogens

Russian Federation, 117/40, Gorkogo street, Rostov-on-Don, 344002

Ludmila P. Alekseeva

Rostov-on-Don Research Anti-Plague Institute

Email: alekseeva_lp@antiplague.ru

DPlil, Professor, Head of Laboratory of Hybridomes

Russian Federation, 117/40, Gorkogo street, Rostov-on-Don, 344002

Ruslan V. Pisanov

Rostov-on-Don Research Anti-Plague Institute

Email: pisanov_rv@antiplague.ru

Phd, Head of Laboratory of Diagnostics of Especially Dangerous Infections

Russian Federation, 117/40, Gorkogo street, Rostov-on-Don, 344002

References

  1. Титова С.В., Москвитина Э.А., Кругликов В.Д., и др. Холера: оценка эпидемиологической обстановки в мире и России в 2006–2015 гг. Прогноз на 2016 г. // Проблемы особо опасных инфекций. – 2016. – № 1. – С. 20–27. [Titova SV, Moskvitina EA, Kruglikov VD, et al. Cholera: analysis of epidemiological situation across the world and in Russia within a period of 2006-2015. Prognosis for 2016. Problems of Particularly Dangerous Infections. 2016;(1):20-27 (In Russ.)]. doi: 10.21055/0370-1069-2016-1-20-27.
  2. Смирнова Н.И., Заднова С.П., Шашкова А.В., Кутырев В.В. Вариабельность генома измененных вариантов Vibrio cholerae биовара эль-тор, изолированных на территории России в современный период // Молекулярная генетика, микробиология и вирусология. – 2011. – № 3. – С. 11–18. [Smirnova NI, Zadnova SP, Shashkova AV, Kutyrev VV. Genome variability in the altered variants of Vibrio cholerae biovar El Tor isolated in Russia. Mol Gen Mikrobiol Virusol. 2011;(3):11-18. (In Russ.)]
  3. Монахова Е.В. Стратегия вирулентности холерных вибрионов и пути ее реализации (обзор) // Проблемы особо опасных инфекций. – 2013. – № 4. – С. 60–68. [Monakhova EV. Cholera vibrio virulence strategy and ways of its realization (scientific review). Problems of Particularly Dangerous Infections. 2013;(4):60-68. (In Russ.)]. doi: 10.21055/0370-1069-2013-4-60-68.
  4. Монахова Е.В. Факторы патогенности нехолерогенных штаммов Vibrio cholerae: Автореф. дис. … д-ра биол. наук. – Ростов н/Д, 2012. [Mo nakhova EV. Factory patogennosti nekholerogennykh shtammov Vibrio cholerae. [dissertation] Rostov-on-Don, 2012. 46 p. (in Russ.)]
  5. Левченко Д.А., Кругликов В.Д., Архангельская И.В., Ежова М.И. Анализ динамики выделения штаммов холерных вибрионов из объектов окружающей среды на территории Российской Федерации с 1989 по 2016 г. с помощью авторской ГИС // Вестник Пермского университета, серия: Биология. – 2017. – № 1. – С. 112–117. [Levchenko DA, Kruglikov VD, Arkhangel’skaya IV, Ezhova MI. Analysis of the dynamics of Vibrio cholerae strains isolation from environmental objects on the territory of the Russian Federation from 1989 to 2016 using the author’s GIS. Vestn Permsk Univ Ser Biol. 2017;(1):112-117. (In Russ.)]
  6. Миронова Л.В. Научное обоснование совершенствования подходов к идентификации и молекулярному типированию Vibrio cholerae в системе микробиологического мониторинга: Автореф. дис. … д-ра мед. наук. – Иркутск, 2017. [Mironova LV. Nauchnoe obosnovaniesovershenstvovaniya podkhodov k identifikacii i molekularnomu tipirovaniyu v sisteme mikrobiologicheskogo monitoringa. [dissertation] Irkutsk; 2017. (In Russ.)]
  7. Moorthy S, Watnick PI. Genetic evidence that the Vibrio cholerae monolayer is a distinct stage in biofilm development. Mol Microbiol. 2004;52(2):573-587. doi: 10.1111/j.1365-2958.2004.04000.x.
  8. Silva AJ, Benitez JA. Vibrio cholerae Biofilms and Cho lera Pathogenesis. PLoS Negl Trop Dis. 2016;10(2): e0004330. doi: 10.1371/journal.pntd.0004330.
  9. Marsh JW, Taylor RK. Genetic and transcriptional analyses of the Vibrio cholerae mannose-sensitive hemagglutinin type 4 pilus gene locus. J Bacteriol. 1999;181(4):1110-1117.
  10. Fong JC, Syed KA, Klose KE, Yildiz FH. Role of Vibrio polysaccharide (vps) genes in VPS production, biofilm formation and Vibrio cholerae pathogenesis. Microbiology. 2010;156(Pt 9):2757-2769. doi: 10.1099/mic.0.040196-0.
  11. Teschler JK, Zamorano-Sanchez D, Utada AS, et al. Living in the matrix: assembly and control of Vibrio cho lerae biofilms. Nat Rev Microbiol. 2015;13(5):255-68. doi: 10.1038/nrmicro3433.
  12. Титова С.В., Кушнарева Е.В. Оценка способности холерных вибрионов к образованию биопленок in vitro с помощью нового методического подхода // Фундаментальные исследования. – 2014. – № 10. – С. 375–379. [Titova SV, Kusnaryova EV. Evaluation of Vibrio choleraeability to form biofilms in vitro with the use of the new experimental procedure. Fundamental research. 2014;(10):375-379. (In Russ.)]
  13. Горбунов В.А., Титов Л.П., Ермакова Т.С. Многоцентровое исследование антибиотикорезистентности нозокомиальных штаммов Pseudomonas aeruginosa в Республике Беларусь // Здравоохранение (Минск). – 2007. – № 1. – С. 28–31. [Gorbunov VA, Titov LP, Ermakova TC. Mnogotsentrovoe issledovanie antibiotikorezistentnosti nozokomial’nykh shtammov Pseudomonas aeruginosa v Respublike Belarus’. Zdravookhranenie (Minsk). 2007;(1):28-31. (In Russ.)]
  14. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinforma tics. 2014;30(15):2114-2120. doi: 10.1093/bioinformatics/btu170.
  15. Simpson JT, Wong K, Jackman SD, et al. ABySS: a parallel assembler for short read sequence data. Genome Res. 2009;19(6):1117-1123. doi: 10.1101/gr.089532.108.
  16. Jonson G, Holmgren J, Svennerholm AM. Identification of a mannose-binding pilus on Vibrio cho lerae El Tor. Microb Pathog. 1991;11(6):433-441. doi: 10.1016/0882-4010(91)90039-D.
  17. Jouravleva EA, McDonald GA, Marsh JW, et al. The Vibrio cholerae mannose-sensitive hemagglutinin is the receptor for a filamentous bacteriophage from V. cho lerae O139. Infect Immun. 1998;66(6):2535-2539.
  18. Marsh JW, Sun D, Taylor RK. Physical linkage of the Vibrio cholerae mannose-sensitive hemagglutinin secretory and structural subunit gene loci: identification of the mshG coding sequence. Infect Immun. 1996;64(2):460-465.
  19. Шалу О.А., Писанов Р.В., Монахова Е.В. Эффективность экспрессии гена tdh Vibrio parahaemolyticus зависит от двух точковых мутаций в его промоторной области // Генетика. – 2012. – Т. 48. – № 12. – С. 1364. [Shalu OA, Pisanov RV, Monakhova EV. Efficiency of Vibrio parahaemolyticus tdh gene expression depends upon two point mutations in its promoter region. Russian journal of genetics. 2012;48(12):1364. (In Russ.)]
  20. Sultan SZ, Silva AJ, Benitez JA. The PhoB regulatory system modulates biofilm formation and stress response in El Tor biotype Vibrio cholerae. FEMS Microbiol Lett. 2010;302(1):22-31. doi: 10.1111/j.1574-6968.2009.01837.x.
  21. Shikuma NJ, Fong JC, Yildiz FH. Cellular levels and binding of c-di-GMP control subcellular localization and activity of the Vibrio cholerae transcriptional regulator VpsT. PLoS Pathog. 2012;8(5):e1002719. doi: 10.1371/journal.ppat.1002719.
  22. Yildiz FH, Dolganov NA, Schoolnik GK. VpsR, a Member of the Response Regulators of the Two-Component Regulatory Systems, Is Required for Expression of vps Biosynthesis Genes and EPS(ETr)-Associated Phenotypes in Vibrio cholerae O1 El Tor. J Bacteriol. 2001;183(5):1716-1726. doi: 10.1128/JB.183.5.1716-1726.2001.
  23. Fong JC, Yildiz FH. The rbmBCDEF gene cluster modulates development of rugose colony morphology and biofilm formation in Vibrio cholerae. J Bacteriol. 2007;189(6):2319-2330. doi: 10.1128/JB.01569-06.
  24. Писанов Р.В., Ежова М.И., Монахова Е.В., и др. Особенности структуры генома токсигенного штамма Vibrio cholerae El Tor Инаба, выделенного в 2014 г. из открытого водоема в Ростове-на-Дону // Проблемы особо опасных инфекций. – 2015. – № 2. – С. 63–67. [Pisanov RV, Ezhova MI, Monakhova EV, et al. Peculiarities of genome structure of toxigenic Vibrio cholerae El Tor Inaba strain, isolated from a surface water body in the territory of Rostov-on-Don in 2014. Problems of Particularly Dangerous Infections. 2015;(2):63-67. (In Russ.)]
  25. Ramamurthy T, Monakhova EV, Mukhopadhyay AK, et al. Comparative genomics of Vibrio cholerae and other enteric vibrios from Russia and India. In: Proceedings of the International conference “Shared threats – collaborative actions. Response of BRICS countries to the challenges ofinfectious diseases”; Moscow, 23-24 Jun 2015. Moscow; 2015. P. 15-18.
  26. Samadi AR, Huq MI, Shahid N, et al. Classical Vibrio cholerae biotype displaces EL tor in Bangladesh. Lancet. 1983;1(8328):805-807. doi: 10.1016/S0140-6736(83)91860-3.
  27. Siddique AK, Baqui AH, Eusof A, et al. Survival of classic cholera in Bangladesh. Lancet. 1991;337(8750):1125-1127. doi: 10.1016/0140-6736(91)92789-5.
  28. Nair GB, Faruque SM, Bhuiyan NA, et al. New variants of Vibrio cholerae O1 biotype El Tor with attributes of the classical biotype from hospitalized patients with acute diarrhea in Bangladesh. J Clin Microbiol. 2002;40(9): 3296-99. doi: 10.1128/JCM.40.9.3296-3299.2002.
  29. Alam M, Nusrin S, Islam A, et al. Cholera between 1991 and 1997 in Mexico was associated with infection by classical, El Tor, and El Tor variants of Vibrio cholerae. J Clin Microbiol. 2010;48(10):3666-3674. doi: 10.1128/JCM.00866-10.
  30. Choi SY, Rashed SM, Hasan NA, et al. Phylogenetic Diversity of Vibrio cholerae Associated with Endemic Cholera in Mexico from 1991 to 2008. MBio. 2016;7(2): e02160. doi: 10.1128/mBio.02160-15.
  31. Rai KR, Rai SK, Bhatt DR, et al. Study of medically important Vibrios in the sewage of Katmandu Valley, Nepal. Nepal Med Coll J. 2012;14(3):212-215.
  32. Bakhshi B, Boustanshenas M, Mahmoudi-aznaveh A. Emergence of Vibrio cholerae O1 classical biotype in 2012 in Iran. Lett Appl Microbiol. 2014;58(2):145-9. doi: 10.1111/lam.12167.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of a microcosm for studies of biofilm formation by V. cholera

Download (341KB)
3. Fig. 2. Comparison of msh-clusters of 2 V. cholerae strains. Genes, identical or similar to prototypes are shown in black and significantly different – in grey

Download (133KB)
4. Fig. 3. Comparison of vps-I – rbm – vps-II clusters of two V. cholerae strains. Genes, identical or similar to prototypes are shown in black, significantly different – in grey, truncated – in white, the new gene is hatched

Download (185KB)

Copyright (c) 2018 Titova S.V., Monakhova E.V., Alekseeva L.P., Pisanov R.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies