DNA damage induction in bone marrow cells of mice after farnesenes and 2,5-dimethylpyrazine sniffing

Cover Page

Cite item

Full Text

Abstract

Background. Pheromones are an important regulatory link of synecological contacts in numerous animal species. Chemo-signaling participates in establishing of population social structure, it regulates different types of behavior, changes hormonal state and maturation rate, etc. It also can affect the genetic material expression and integrity.

Material and methods. Groups of adult males of CBA/Lac/Sto/Rap strain were exposed to volatile chemosignals (mixture of α- and β-farnesenes or 2,5-dime thylpyrazine) for 2 or 24 hours. Bone marrow cells were prepared for single cell gel electrophoresis (comet assay test). Content of DNA in comet cells were analyzed. In case of 24 hours exposure bone marrow cells were fixed also for ana-telophase analysis.

Results. It is shown that exposures with farnesenes or 2,5-DMP both damage genetic material of bone marrow cells. It also followed by induction of mitotic aberration frequency. Simultaneous exposure with all chemosignals does not increase damaging effect.

Conclusion. Chemosignals which serve as stress-pheromones in mice decrease also the integrity of genetic material in bone marrow cells of recipients. It could be a mechanism of pheromonal impact on density and space-genetic structure of mouse populations.

About the authors

Eugene V. Daev

Saint Petersburg State University

Author for correspondence.
Email: mouse_gene@mail.ru
ORCID iD: 0000-0003-2036-6790
SPIN-code: 8926-6034
Scopus Author ID: 6701779129
ResearcherId: D-1165-2013

PhD, ScD, Professor, Department of Genetics and Biotechnology

 

Russian Federation, 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

Victoria A. Mamontova

Saint Petersburg State University

Email: vicktory.shubina@gmail.com

Undergraduate, Department of Genetics and Biotechnology

Russian Federation, 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

Timofey S. Glinin

Saint Petersburg State University

Email: t.glinin@gmail.com

Postgraduate, Department of Genetics and Biotechnology

Russian Federation, 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

References

  1. Dulac C, Torello AT. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat Rev Neurosci. 2003;4(7):551-562. doi: 10.1038/nrn1140.
  2. Asaba A, Hattori T, Mogi K, Kikusui T. Sexual attractiveness of male chemicals and vocalizations in mice. Front Neurosci. 2014;8:231. doi: 10.3389/fnins.2014.00231.
  3. Harvey S, Jemiolo B, Novotny M. Pattern of volatile compounds in dominant and subordinate male mouse urine. J Chem Ecol. 1989;15(7):2061-2072. doi: 10.1007/BF01207438.
  4. Novotny M, Harvey S, Jemiolo B. Chemistry of male dominance in the house mouse, Mus domesticus. Experientia. 1990;46(1):109-113. doi: 10.1007/bf01955433.
  5. Morgan C. Melanocortin-5 Receptor Deficiency Reduces a Pheromonal Signal for Aggression in Male Mice. Chem Senses. 2004;29(2):111-115. doi: 10.1093/chemse/bjh011.
  6. Jemiolo B, Andreolini F, Xie T-M, et al. Puberty-affecting synthetic analogs of urinary chemosignals in the house mouse, Mus domesticus. Physiol Behav. 1989;46(2):293-298. doi: 10.1016/0031-9384(89)90270-9.
  7. Даев Е.В., Суринов Б.П., Дукельская А.В. Влияние стресса на хемосигнализацию у лабораторных мышей линии CBA и C57BI/6 // Экологическая генетика. – 2007. – Т. 5. – № 2. – C. 37–43. [Daev EV, Surinov BP, Dukelskaya AV. Chemosignaling in CBA and C57Bl/6 mouse strains is modified by stress. Ecological Genetics. 2007;5(2):37-43. (In Russ.)]. doi: 10.17816/ecogen5237-43.
  8. Даев Е.В. Генетические эффекты ольфакторного стресса: исследования на домовой мыши. — Саарбрюккен: Lambert Academic Publishing, 2011. [Daev EV. Geneticheskie effekty ol’faktornogo stressa: issledovaniya na domovoy myshi. Saarbrücken: Lambert Academic Publishing; 2011. (In Russ.)]
  9. Сирота Н.П., Кузнецова Е.А. Применение метода «комета тест» в радиобиологических исследованиях // Радиационная биология. Радиоэкология. – 2010. – Т. 50. – № 3. – С. 329–339. [Sirota NP, Kuznetsova EA. The Comet Assay Application in Radiobiological Investigations. Radiation biology, radioecology. 2010;50(3):329-339. (In Russ.)]
  10. Sasaki YF, Sekihashi K, Izumiyama F, et al. The comet assay with multiple mouse organs: comparison of comet assay results and carcinogenicity with 208 chemicals selected from the IARC monographs and U.S. NTP Carcinogenicity Database. Crit Rev Toxicol. 2000;30(6):629-799. doi: 10.1080/10408440008951123.
  11. Daev EV, Kazarova VE, Vyborova AM, Dukel’skaya AV. Effects of “Pheromone-Like” pyrazine-containing compounds on stability of genetic apparatus in bone marrow cells of the male house mouse Mus musculus L. J Evol Biochem Physiol. 2009;45(5):589-595. doi: 10.1134/s0022093009050053.
  12. Daev EV, Petrova MV, Onopa LS, et al. DNA damage in bone marrow cells of mouse males in vivo after exposure to the pheromone: Comet assay. Russian Journal of Genetics. 2017;53(10):1105-1112. doi: 10.1134/s1022795417100027.
  13. Costa EV, Menezes LR, Rocha SL, et al. Antitumor Properties of the leaf essential oil of Zornia brasiliensis. Planta Med. 2015;81(7):563-567. doi: 10.1055/s-0035-1545842.
  14. Phutdhawong W, Donchai A, Korth J, et al. The components and anticancer activity of the volatile oil fromStreblus asper. Flavour Fragr J. 2004;19(5):445-447. doi: 10.1002/ffj.1342.
  15. Can OD, Demir Ozkay U, Kiyan HT, Demirci B. Psychopharmacological profile of Chamomile (Matricaria recutita L.) essential oil in mice. Phytomedicine. 2012;19(3-4):306-310. doi: 10.1016/j.phymed.2011.10.001.
  16. Çelik K, Toğar B, Türkez H, Taşpinar N. In vitro cytotoxic, genotoxic, and oxidative effects of acyclic sesquiterpene farnesene. Turk J Biol.. 2014;38:253-259. doi: 10.3906/biy-1309-55.
  17. Suckling DM, Stringer LD, Bunn B, et al. Trail pheromone disruption of red imported fire ant. J Chem Ecol. 2010;36(7):744-750. doi: 10.1007/s10886-010-9810-6.
  18. Verheggen FJ, Diez L, Sablon L, et al. Aphid alarm pheromone as a cue for ants to locate aphid partners. PLoS One. 2012;7(8): e41841. doi: 10.1371/journal.pone.0041841.
  19. Sasaki T, Holldobler B, Millar JG, Pratt SC. A context-dependent alarm signal in the ant Temnothorax rugatulus. J Exp Biol. 2014;217(Pt 18):3229-3236. doi: 10.1242/jeb.106849.
  20. Park D, Maga JA. Identification of key volatiles responsible for odour quality differences in popped popcorn of selected hybrids. Food Chem. 2006;99(3):538-545. doi: 10.1016/j.foodchem.2005.08.019.
  21. Paraskevopoulou A, Chrysanthou A, Koutidou M. Characterisation of volatile compounds of lupin protein isolate-enriched wheat flour bread. Food Res Int. 2012;48(2):568-77. doi: 10.1016/j.foodres.2012.05.028.
  22. Brown RE, Macdonald DW. Social odours in mammals. Oxford: Oxford University Press; 1985.
  23. J Vandenbergh, editor. Pheromones and Reproduction in Mammals. 1st ed. London: Elsevier; 1983.
  24. Jemiolo B, Xie T-M, Novotny M. Urine marking in male mice: Responses to natural and synthetic chemosignals. Physiol Behav. 1992;52(3):521-526. doi: 10.1016/0031-9384(92)90341-x.
  25. Novotny M, Jemiolo B, Harvey S, et al. Adrenal-mediated endogenous metabolites inhibit puberty in female mice. Science. 1986;231(4739):722-725. doi: 10.1126/science.3945805.
  26. Jemiolo B, Novotny M. Inhibition of sexual maturation in juvenile female and male mice by a chemosignal of female origin. Physiol Behav. 1994;55(3):519-522. doi: 10.1016/0031-9384(94)90110-4.
  27. Tzapigina R, Aref’ev A, Sverdlova O, Daev E. Pheromonal regulation hypothesis of the space-genetic structure of the house mouse (Mus musculus L.) populations. In: Proceedings of the World Congress of Landscape Ecology, IALE; 1991; Ottawa, Canada. Ottawa: Carleton University; 1991. p. 84.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Frequency distribution of bone marrow cells with different DNA content in comet tails after 2 hrs exposures of CBA mouse males with different chemosignals or acrylamide injection (f ± 99% CI). I – Control; II – exposure to corresponding chemosignal (1 – Farnesenes; 2 – DMP; 3 – both farnesenes and DMP); III – acrylamide injection. Vertical lines are F0.5 points (see table 1)

Download (115KB)
3. Fig. 2. Frequency distribution of bone marrow cells with different DNA content in comet tails after 24 hrs exposures of CBA mouse males with different chemosignals (f ± 99% CI). I – Control; II – exposure to corresponding chemosignal (1 – Farnesenes; 2 – DMP; 3 – both farnesenes and DMP). Black zones show where confidence intervals are not overlapping. The rest symbols are the same as in Fig. 1

Download (94KB)

Copyright (c) 2018 Daev E.V., Mamontova V.A., Glinin T.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies