Analysis of the genetic diversity of Ayrshire cattle in Russia (part 1)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

AIM: Evaluation of the features of the genomic architecture of Ayrshire cattle in Russia in comparison with other dairy populations of Bos taurus.

MATERIALS AND METHODS: Using bioinformatic analysis of 42628 SNP markers obtained during genotyping using the BovineSNP50_v3 BeadChip medium density microarray, the features of the genomic architecture of five Bos taurus populations of different breeds were revealed.

RESULTS: The domestic population of Ayrshire cattle was characterized by the lowest heterozygosity (Ho = 0.335, He = 0.339) and insignificant inbreeding (Fis = 0.010) MDS analysis. At the same time, domestic breeding animals formed a separate group within a single cluster of Ayrshirs.

CONCLUSION: The Russian population of Ayrshire cattle is distinguished by a unique genome architecture, while retaining the genetic variants of the Finnish Ayrshire cattle and minor traces of Holstein gene pool.

About the authors

Marina V. Pozovnikova

All-Russian Research Institute of Genetics and Breeding of Farm Animals – Branch of the L.K. Ernst Federal Research Center for Animal Husbandry

Email: pozovnikova@gmail.com
ORCID iD: 0000-0002-8658-2026
SPIN-code: 5441-6996
Scopus Author ID: 57200383317
ResearcherId: ABB-6231-2020

Cand. Sci. (Biol.), Senior Researcher

Russian Federation, Pushkin, Saint Petersburg

Olga V. Tulinova

All-Russian Research Institute of Genetics and Breeding of Farm Animals – Branch of the L.K. Ernst Federal Research Center for Animal Husbandry

Email: tulinova_59@mail.ru
SPIN-code: 3973-6337
Scopus Author ID: 57200384693
ResearcherId: ABD-7279-2021

Cand. Sci. (Agricultural), Leading Researcher

Russian Federation, Pushkin, Saint Petersburg

Alexandr A. Sermyagin

L.K. Ernst Federal Research Center for Animal Husbandry

Email: alex_sermyagin85@mail.ru
ORCID iD: 0000-0002-1799-6014
SPIN-code: 6695-4171
Scopus Author ID: 57103477400

Cand. Sci. (Agricultural), Leading Researcher

Russian Federation, Dubrovitsy, Moscow Region

Yuriy S. Shcherbakov

All-Russian Research Institute of Genetics and Breeding of Farm Animals – Branch of the L.K. Ernst Federal Research Center for Animal Husbandry

Email: yura.10.08.94.94@mail.ru
ORCID iD: 0000-0001-6434-6287
SPIN-code: 3547-1009
Scopus Author ID: 57221619264

Junior Researcher

Russian Federation, Pushkin, Saint Petersburg

Elena A. Romanova

All-Russian Research Institute of Genetics and Breeding of Farm Animals – Branch of the L.K. Ernst Federal Research Center for Animal Husbandry

Email: splicing86@gmail.com
SPIN-code: 1444-3678

Junior Researcher

Russian Federation, Pushkin, Saint Petersburg

Artem P. Dysin

All-Russian Research Institute of Genetics and Breeding of Farm Animals – Branch of the L.K. Ernst Federal Research Center for Animal Husbandry

Email: artemdysin@mail.ru
ORCID iD: 0000-0002-4468-0365
SPIN-code: 2573-7614
Scopus Author ID: 57208779157

Junior Researcher

Russian Federation, Pushkin, Saint Petersburg

Olga V. Mitrofanova

All-Russian Research Institute of Genetics and Breeding of Farm Animals – Branch of the L.K. Ernst Federal Research Center for Animal Husbandry

Author for correspondence.
Email: mo1969@mail.ru
ORCID iD: 0000-0003-4702-2736
SPIN-code: 4378-9500
Scopus Author ID: 57188701229
ResearcherId: S-5336-2018

Cand. Sci. (Biol.), Scientific Secretary

Russian Federation, Pushkin, Saint Petersburg

References

  1. Lovarelli D, Bacenetti J, Guarino M. A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production? J Clean Prod. 2020;262:121409. doi: 10.1016/j.jclepro.2020.121409
  2. Statista. Prices and Acess [Internet]. Number of cattle worldwide from 2012 to 2021 [update 2021 Nov 18]. Available from: https://www.statista.com/statistics/263979/global-cattle-population-since-1990/
  3. Eurostat. Statistics Explained [Internet]. Agricultural production — livestock and meat [update 2021 Nov 18]. Available from: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agricultural_production_-_livestock_and_meat
  4. Statista. Prices and Acess [Internet]. Cattle stock in Asia Pacific in 2019, by country [update 2021 Nov 18]. Available from: https://www.statista.com/statistics/658597/asia-pacific-cattle-production-by-country/
  5. Loftus RT, MacHugh DE, Bradley DG, et al. Evidence for two indepedent domestications of cattle. Proc Natl Acad Sci USA. 1994;91(7):2757–2761. doi: 10.1073/pnas.91.7.2757
  6. Larkin DM, Yudin NS. The genomes and history of domestic animals. Mol Genet Microbiol Virol. 2016;31:197–202. doi: 10.3103/S0891416816040054
  7. Martikainen K, Koivula M, Uimari P. Identification of runs of homozygosity affecting female fertility and milk production traits in Finnish Ayrshire cattle. Sci Rep. 2020;10:3804. doi: 10.1038/s41598-020-60830-9
  8. Tulinova OV, Pozovnikova MV, Sermyagin AA, Vasilyeva EN. Inbreed types of airshire cattle of Russia. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional’noe obrazovanie. 2021;(1):1–26. (In Russ.) doi: 10.32786/2071-9485-2021-01-26
  9. Drillich M, Mahlstedt M, Reichert U, et al. Strategies to improve the therapy of retained fetal membranes in dairy cows. J Dairy Sci. 2006;89(2):627–635. doi: 10.3168/jds.S0022-0302(06)72126-9
  10. Pozovnikova MV, Tulinova OV, Arlimova EV, et al. Beta-lactoglobulin gene (β-lg) polymorphism among bulls of the ayrshire breed of the domestic gene pool. Genetics and breeding of animals. 2018;(4):10–15. (In Russ.) doi: 10.31043/2410-2733-2018-4-10-10-15
  11. Pozovnikova M, Tulinova O, Krutikova A, et al. Monitoring and significance of the recessive genetic defect AH1 of Ayrshire cattle. Czech Journal of Animal Science. 2020;65(9):323–329. doi: 10.17221/110/2020-CJAS
  12. Sermyagin AA, Gladyr’ EA, Kharitonov SN, et al. Genome-wide association study for milk production and reproduction traits in Russian holstein cattle population. Agricultural Biology. 2016;51(2): 182–193. (In Russ.) doi: 10.15389/agrobiology.2016.2.182eng
  13. Zinovieva NA, Dotsev AV, Sermyagin AA, et al. Study of genetic diversity and population structure of five Russian cattle breeds using whole-genome SNP analysis. Agricultural Biology. 2016;51(6): 788–800. (In Russ.) doi: 10.15389/agrobiology.2016.6.788eng
  14. Bejarano D, Martínez R, Manrique C, et al. Linkage disequilibrium levels and allele frequency distribution in Blanco Orejinegro and Romosinuano Creole cattle using medium density SNP chip data. Genet Mol Biol. 2018;41(2):426–433. doi: 10.1590/1678-4685-GMB-2016-0310
  15. Zhang W, Gao X, Zhang Y, et al. Genome-wide assessment of genetic diversity and population structure insights into admixture and introgression in Chinese indigenous cattle. BMC genetics. 2018;19:114. doi: 10.1186/s12863-018-0705-9
  16. Yurchenko A, Yudin N, Aitnazarov R, et al. Genome-wide genotyping uncovers genetic profiles and history of the Russian cattle breeds. Heredity. 2018;120:125–137. doi: 10.1038/s41437-017-0024-3
  17. Iso-Touru T, Tapio M, Vilkki J, et al. Genetic diversity and genomic signatures of selection among cattle breeds from Siberia, eastern and northern Europe. Anim Genet. 2016;47(6):647–657. doi: 10.1111/age.12473
  18. WIDDE [Internet]. Web-Interfaced next generation Database dedicated to genetic Diversity Exploration [update 2021 Apr 18]. Available from: http://widde.toulouse.inra.fr/widde/
  19. Anderson CA, Pettersson FH, Clarke GM, et al. Data quality control in genetic case-control association studies. Nature protocols. 2010;5:1564–1573. doi: 10.1038/nprot.2010.116
  20. Van Liere JM, Rosenberg NA. Mathematical properties of the r2 measure of linkage disequilibrium. Theor Popul Biol. 2008;74(1): 130–137. doi: 10.1016/j.tpb.2008.05.006
  21. Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2:2074–2093. doi: 10.1371/journal.pgen.0020190
  22. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestryin unrelated individuals. Genome Res. 2009;19: 1655–1664. doi: 10.1101/gr.094052.109
  23. Gebrehiwot NZ, Aliloo H, Strucken EM, et al. Inference of Ancestries and Heterozygosity Proportion and Genotype Imputation in West African Cattle Populations. Front Genet. 2021;12:335. doi: 10.3389/fgene.2021.584355

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Results of analysis of the divergence of five populations of cattle (B. taurus) of different breeds, estimated using the BovineSNP50_v3 BeadChip DNA chip using the MDS algorithm

Download (120KB)
3. Figure 2. Graph obtained when calculating the number of ancestral clusters (K) from 2 to 4 based on cross-validation errors (CV% error)

Download (80KB)
4. Figure 3. Comparative structure of the cattle population with three clusters. I - RUS, Russian Ayrshires; II - FA, Ayrshires of Finnish origin; III - H, Holsteins; IV - NRC, Norwegian red cattle; V - RH, red holsteins. Vertical columns - individual individuals. The colors show the proportions of individual gene pools in groups

Download (144KB)

Copyright (c) 2022 ООО "Эко-Вектор"


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies