Cloning of PpKAR2 and PpPDI1 genes promoters from yeast Pichia pastoris, an evaluation of their activity and efficacy for the heterologous genes expression

Cover Page

Cite item

Full Text

Abstract

Background. Yeast Pichia pastoris is successfully used in biotechnology, with their help synthesized various compounds. Promoters are a key factor in the productivity of an expression system, since they determine the expression level of a heterologous gene.

The aim of our work was to study the promoter regions of the PpKAR2 and PpPDI1 genes and to evaluate their use for effective expression of heterologous genes.

Materials and Methods. To evaluate the activity of promoters, we used a reporter system based on the structural gene of acid phosphatase of yeast Saccharomyces cerevisiae – PHO5. To determine the effect of overproduction of native and heterologous protein on the activity of the promoters under study, we used the producer strains of P. pastoris protein disulfide isomerase and maize delta-zein. To evaluate the effectiveness of the use of the promoters under study for the expression of heterologous genes, we have expressed under their control a gene encoding human interferon-alpha16.

Results. The promoters of the yeast genes – PpKAR2 and PpPDI1 were cloned. Their activity was compared with the promoter of the PpAOX1 gene in the native strains, as well as in strains with overproduction of native and heterologous proteins. Under the control of these promoters, the gene encoding human interferon-alpha 16 is expressed.

Conclusion. The promoters studied were weaker than the promoter of the AOX1 gene, but increase their activity in response to the production of heterologous proteins and can be used to express hete­rologous genes.

About the authors

Mikhail A. Tsygankov

Saint Petersburg State University

Author for correspondence.
Email: mial.tsygankov@yandex.ru
ORCID iD: 0000-0002-2513-6655
SPIN-code: 1098-0995

Engeneer-Researcher, Faculty of Biology, Department of Genetics and Biotechnology, Laboratory of Biochemical Genetics

Russian Federation, 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

Marina V. Padkina

Saint Petersburg State University

Email: mpadkina@mail.ru
ORCID iD: 0000-0002-4051-4837
SPIN-code: 7709-0449

Professor, Faculty of Biology, Department of Genetics and Biotechnology, Laboratory of Biochemical Genetics

Russian Federation, 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

References

  1. Schwarzhans JP, Luttermann T, Geier M, et al. Towards systems metabolic engineering in Pichia pastoris. Biotechnol Adv. 2017;35(6):681-710. doi: 10.1016/j.biotechadv.2017.07.009.
  2. Pichia.com [Internet]. Pichia Technology from RCT. Pichia Produced Products on the Market [cited 2018 Apr 19]. Available from: www.pichia.com/science-center/commercialized-products/.
  3. Zahrl RJ, Pena DA, Mattanovich D, Gasser B. Systems biotechnology for protein production in Pichia pastoris. FEMS Yeast Res. 2017;17(7). doi: 10.1093/femsyr/fox068.
  4. Ahmad M, Hirz M, Pichler H, Schwab H. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol. 2014;98(12):5301-5317. doi: 10.1007/s00253-014-5732-5.
  5. Patent USA No US008236528B2/ 2012.
  6. Wang J, Wang X, Shi L, et al. Methanol-Independent Protein Expression by AOX1 Promoter with trans-Acting Elements Engineering and Glucose-Glycerol-Shift Induction in Pichia pastoris. Sci Rep. 2017;7:41850. doi: 10.1038/srep41850.
  7. Ata O, Prielhofer R, Gasser B, et al. Transcriptional engineering of the glyceraldehyde-3-phosphate dehydrogenase promoter for improved heterologous protein production in Pichia pastoris. Biotechnol Bioeng. 2017;114(10):2319-2327. doi: 10.1002/bit.26363.
  8. Stadlmayr G, Mecklenbrauker A, Rothmuller M, et al. Identification and characterisation of novel Pichia pastoris promoters for heterologous protein production. J Biotechnol. 2010;150(4):519-529. doi: 10.1016/j.jbiotec.2010.09.957.
  9. Prielhofer R, Maurer M, Klein J, et al. Induction without methanol: novel regulated promoters enable high-level expression in Pichia pastoris. Microb Cell Fact. 2013;12:5. doi: 10.1186/1475-2859-12-5.
  10. Vogl T, Glieder A. Regulation of Pichia pastoris promoters and its consequences for protein production. N Biotechnol. 2013;30(4):385-404. doi: 10.1016/j.nbt.2012.11.010.
  11. Landes N, Gasser B, Vorauer-Uhl K, et al. The vitamin-sensitive promoter PTHI11 enables pre-defined autonomous induction of recombinant protein production in Pichia pastoris. Biotechnol Bioeng. 2016;113(12):2633-2643. doi: 10.1002/bit.26041.
  12. Gasser B, Saloheimo M, Rinas U, et al. Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb Cell Fact. 2008;7:11. doi: 10.1186/1475-2859-7-11.
  13. Kohno K, Normington K, Sambrook J, et al. The promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum. Mol Cell Biol. 1993;13(2):877-890. doi: 10.1128/MCB.13.2.877.
  14. Guerfal M, Ryckaert S, Jacobs PP, et al. The HAC1 gene from Pichia pastoris: characterization and effect of its overexpression on the production of secreted, surface displayed and membrane proteins. Microb Cell Fact. 2010;9:49. doi: 10.1186/1475-2859-9-49.
  15. Wilkinson B, Gilbert HF. Protein disulfide isomerase. Biochim Biophys Acta. 2004;1699(1-2):35-44. doi: 10.1016/j.bbapap.2004.02.017.
  16. Warsame A, Vad R, Kristensen T, Oyen TB. Characterization of a gene encoding a Pichia pastoris protein disulfide isomerase. Biochem Biophys Res Commun. 2001;281(5):1176-1182. doi: 10.1006/bbrc.2001.4479.
  17. Guan B, Chen F, Su S, et al. Effects of co-overexpression of secretion helper factors on the secretion of a HSA fusion protein (IL2-HSA) in Pichia pastoris. Yeast. 2016. doi: 10.1002/yea.3183.
  18. Sun H, Bankefa OE, Ijeoma IO, et al. Systematic assessment of Pichia pastoris system for optimized beta -galactosidase production. Synth Syst Biotechnol. 2017;2(2):113-120. doi: 10.1016/j.synbio.2017.04.001.
  19. Цыганков М.А., Падкина М.В. Влияние сверхэкспрессии гена PDI на продукцию гетерологичных белков в дрожжах Pichia pastoris // Экологическая генетика. – 2017. – Т. 15. – № 2. – С. 21–30. [Tsygankov MA, Padkina MV. Influence of PDI gene overexpression on heterological proteins production in yeast Pichia pastoris. Ekol Genet. 2017;15(2):21-30. (In Russ.)]. doi: 10.17816/ecogen15221-30.
  20. Савинов В.А., Румянцев А.М., Самбук Е.В., Падкина М.В. Создание тест-системы для изучения генетического контроля регуляции гена AOX1 дрожжей Pichia pastoris // Вестник СпбГУ. Серия 3. Биология. – 2009. – № 4. – С. 114–119. [Sa¬vinov VA, Rumyantsev AM, Sambuk EV, Padkina MV. Constructing a test-system for researching genetic control of alcoholoxidase 1 gene regulation in yeast Pichia pastoris. Vestnik Sankt-Peterburgskogo universiteta. Seriia 3, Biologiia. 2009;(4):114-119. (In Russ.)]
  21. Патент РФ на изобретение №2380405/ 29.11.2007. Падкина М.В., Доброгорская М.В., Карабельский А.В, и др. Способ получения рекомбинантного альфа 16-интерферона человека и фармацевтическая композиция для лечения вирусных заболеваний на основе рекомбинантного альфа 16-интерферона человека. [Patent RUS No 2380405/ 29.11.2007. Padkina MV, Dobrogorskaya MV, Karabel’skiy AV, et al. Sposob polucheniya rekombinantnogo al’fa 16-interferona cheloveka i farmatsevticheskaya kompozitsiya dlya lecheniya virusnykh zabolevaniy na osnove rekombinantnogo al’fa 16-interferona cheloveka. (In Russ.)]
  22. Web.mit.edu [Internet]. “Smash and Grab” Yeast Genomic PrepМетодика выделения ДНК, “Smash and Grab” [cited 04.04.18]. Available from: http://web.mit.edu/biology/guarente/protocols/quickprep.html.
  23. Wu S, Letchworth GJ. High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol. Biotechniques. 2004;36(1):152-154. doi: 10.2144/04361DD02.
  24. Маниатис Т., Фрич Э., Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование. – М.: Мир, 1984. [Maniatis T, Fritch E, Sambrook J, Molecular Cloning: A laboratory manual. Moscow: Mir; 1984. (In Russ.)]
  25. Падкина М.В., Краснопевцева Н.Г., Петрашень М.Г., и др. Генетико-биохимическое изучение кислых фосфатаз дрожжей Saccharomyces cerevisiae. Характеристика кислых фосфатаз разных штаммов // Генетика. – 1974. – Т. 10. – № 11. – С. 100–111. [Padkina MV, Krasnopevtseva NG, Petrashen’ MG, et al. Genetiko-biokhimicheskoe izuchenie kislykh fosfataz drozhzhey Saccharomyces cerevisiae. Kharakte¬ristika kislykh fosfataz raznykh shtammov. Genetika. 1974;10(11):100-111. (In Russ.)]
  26. Падкина М.В., Парфёнова Л.В., Градобоева А.Е., Самбук Е.В. Синтез гетерологичных интерферонов в клетках дрожжей Pichia pastoris // Прикладная биохимия и микробиология. – 2010. – Т. 46. – № 4. – С. 448–455. [Padkina MV, Parfenova LV, Gradoboeva AE, Sambuk EV. Heterologous interferons synthesis in yeast Pichia pastoris. Prikl Biokhim Mikrobiol. 2010:46(4):448-455. (In Russ.)]
  27. Expasy.org [Internet]. SIB (Swiss Institute of Bioinformatic) Bioinformatics Resource Portal [cited 2018 Apr 19]. Available from: https://www.expasy.org/.
  28. Yeastract.com [Internet]. Yeast Search for Transcriptional Regulators And Consensus Tracking [cited 2018 Apr 19]. Available from: http://www.yeastract.com/.
  29. Genomatix.de [Internet]. Genomatix Software Suite – Scientific Analysis of genomic data [cited 2018 Apr 19]. Available from: http://www.genomatix.de/.
  30. Graphpad.com [Internet]. GraphPad Prism software [cited 2018 Apr 19]. Available from https://www.graphpad.com/.
  31. Jurgen B, Lin HY, Riemschneider S, et al. Monitoring of genes that respond to overproduction of an insoluble recombinant protein in Escherichia coli glucose-limited fed-batch fermentations. Biotechnol Bioeng. 2000;70(2):217-224. doi: 10.1002/1097-0290(20001020)70:2<217::AID-BIT11>3.0.CO;2-W.
  32. Eastmond DL, Nelson HC. Genome-wide analysis reveals new roles for the activation domains of the Saccharomyces cerevisiae heat shock transcription factor (Hsf1) during the transient heat shock response. J Biol Chem. 2006;281(43):32909-32921. doi: 10.1074/jbc.M602454200.
  33. Mai B, Breeden L. Xbp1, a stress-induced transcriptional repressor of the Saccharomyces cerevisiae Swi4/Mbp1 family. Mol Cell Biol. 1997;17(11):6491-6501. doi: 10.1128/MCB.17.11.6491.
  34. Rodrigues-Pousada C, Menezes RA, Pimentel C. The Yap family and its role in stress response. Yeast. 2010;27(5):245-258. doi: 10.1002/yea.1752.
  35. Alepuz PM, de Nadal E, Zapater M, et al. Osmostress-induced transcription by Hot1 depends on a Hog1-mediated recruitment of the RNA Pol II. EMBO J. 2003;22(10):2433-2442. doi: 10.1093/emboj/cdg243.
  36. Garreau H, Hasan RN, Renault G, et al. Hyperphosphorylation of Msn2p and Msn4p in response to heat shock and the diauxic shift is inhibited by cAMP in Saccharomyces cerevisiae. Microbiology. 2000;146(Pt 9):2113-2120. doi: 10.1099/00221287-146-9-2113.
  37. Tyo KE, Liu Z, Petranovic D, Nielsen J. Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress. BMC Biol. 2012;10:16. doi: 10.1186/1741-7007-10-16.
  38. Werner-Washburne M, Braun E, Johnston GC, Singer RA. Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Rev. 1993;57(2):383-401.
  39. Lin-Cereghino GP, Godfrey L, de la Cruz BJ, et al. Mxr1p, a key regulator of the methanol utilization pathway and peroxisomal genes in Pichia pastoris. Mol Cell Biol. 2006;26(3):883-897. doi: 10.1128/MCB.26.3.883-897.2006.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Tsygankov M.A., Padkina M.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies