Polymorphisms of 5’-UTR of rad51 gene in prostate cancer

Cover Page

Cite item

Full Text

Abstract

Background. Notwithstanding that prostate cancer is largely studied all over the world for many decades, its etiology is not known and there is an intensive work to elucidate the cause and molecular markers for the development of this male cancer. Polymorphisms in DNA repairing genes may affect the DNA repairing capacity that in turn contributes to cancer development. This study aims to explore the polymorphisms of homologous recombination (HR) RAD51 gene (rs1801320 and rs1801321) as a possible risk factor for developing prostate cancer. Sequencing of 5'-UTR of RAD51 gene (rs1801320 and rs1801321) was studied in 80 DNA samples of prostate cancer and 50 DNA samples from a control group. Our results revealed a significant correlation between rs1801320 G>C polymorphism and the presence of prostate cancer in the Jordanian population (p = 0.041, X2 = 6.377). On the other hand, the rs1801321 G>T polymorphism was not associated with the presence of prostate cancer in the study population (p = 0.27, X2 = 2.6). In conclusion, our results shed a light on the possible role of RAD51 gene polymorphisms in the development of prostate cancer; however, a larger representative study is needed to elucidate a possible role of RAD51 gene polymorphisms in development and prognosis of prostate cancer.

About the authors

Mazhar Salim Al-Zoubi

Yarmouk University

Author for correspondence.
Email: mszoubi@yu.edu.jo
ORCID iD: 0000-0003-0248-4777
http://faculty.yu.edu.jo/mszoubi/SitePages/Home.aspx

Department of Basic Medical Sciences, Faculty of Medicine, Assoc. Prof. Of Molecular Oncology and Biochemistry

 

Jordan,  21163 Irbid

Khalid Al-Batayneh

Yarmouk University

Email: albatynehk@yu.edu.jo

Department of Biological Sciences, Faculty of Science

Jordan,  21163 Irbid

Bahaa Al Trad

Yarmouk University

Email: bahaa.tr@yu.edu.jo

Department of Biological Sciences, Faculty of Science

Jordan, 21163 Irbid

Mohammed Alorjani

Jordan University of Science and Technology

Email: msalorjani@just.edu.jo

Department of Pathology, Faculty of Medicine

Jordan, 22110 Irbid

Samir Al Bashir

Jordan University of Science and Technology

Email: samer94@hotmail.com

Department of Pathology, Faculty of Medicine

Jordan, 22110 Irbid

Raed Al-Zoubi

Jordan University of Science and Technology

Email: rmzoubi@just.edu.jo

Department of Chemistry

Jordan, 22110 Irbid 

Raed Al-Zoubi

Jordan University of Science and Technology

Email: rmzoubi@just.edu.jo

Department of Chemistry

Jordan, 22110 Irbid 

Sohaib M. Al-Khatib

Jordan University of Science and Technology

Email: smkhatib4@just.edu.jo

Department of Pathology, Faculty of Medicine

Jordan, 22110 Irbid

Mohammad Al Hamad

Imam Abdulrahman Bin Faisal University (IAU)

Email: mhamad@iau.edu.sa

Department of Pathology, College of Medicine

Saudi Arabia, Dammam, 31441

Mutaz Abd Al-Razaq

Imam Abdulrahman Bin Faisal University (IAU)

Email: mutaz.a@yu.edu.jo

Department of Pathology, College of Medicine

Saudi Arabia, Dammam, 31441

Riyad Muhaidat

Yarmouk University

Email: muhaidat@yu.edu.jo

Department of Biological Sciences, Faculty of Science

Jordan, 21163 Irbid

Ismail Matalka

Jordan University of Science and Technology

Email: imatalka@just.edu.jo

Department of Pathology, Faculty of Medicine

Jordan, 22110 Irbid

References

  1. Abuadas MH, Petro-Nustas W, Albikawi ZF. Predictors of Participation in Prostate Cancer Scree¬ning among Older Men in Jordan. Asian Pac J Cancer Prev 2015;16(13): 5377-83. doi: 10.7314/apjcp.2015.16.13.5377.
  2. Nupponen NN, Carpten JD. Prostate cancer susceptibility genes: many studies, many results, no answers. Cancer Metastasis Rev. 2001;20(3/4):155-164. doi: 10.1023/a:1015557308033.
  3. Simard J. Prostate cancer susceptibility genes: lessons learned and challenges posed. Endocr Relat Cancer. 2003;10(2):225-259. doi: 10.1677/erc.0.0100225.
  4. Ostrander EA, Johannesson B. Prostate Cancer Susceptibility Loci: Finding the Genes. In: JJ Li, SA Li, Mohla S, et al, editors. Hormonal Carcinogenesis V. Advances in Experimental Medicine and Biology. Vol 617. New York: Springer; 2008. p. 179-190. doi: 10.1007/978-0-387-69080-3_17.
  5. Edwards SM, Kote-Jarai Z, Meitz J, et al. Two Percent of Men with Early-Onset Prostate Cancer Harbor Germline Mutations in the BRCA2 Gene. Am J Hum Genet. 2003;72(1):1-12. doi: 10.1086/345310.
  6. Agalliu I, Kwon EM, Zadory D, et al. Germline mutations in the BRCA2 gene and susceptibility to hereditary prostate cancer. Clin Cancer Res. 2007;13(3):839-43. doi: 10.1158/1078-0432.CCR-06-2164.
  7. Gallagher DJ, Gaudet MM, Pal P, et al. Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res. 2010;16(7):2115-2121. doi: 10.1158/1078-0432.CCR-09-2871.
  8. Zhang XJ, Liu P, Zhu F. Polymorphisms of DNA repair-related genes with susceptibility and prognosis of prostate cancer. Genet Mol Res. 2014;13(2):4419-24. doi: 10.4238/2014.January.24.20.
  9. Wood RD, Mitchell M, Sgouros J, Lindahl T. Human DNA repair genes. Science. 2001;291(5507):1284-9. doi: 10.1126/science.1056154.
  10. Lord CJ, Ashworth A. RAD51, BRCA2 and DNA repair: a partial resolution. Nat Struct Mol Biol. 2007;14(6):461-462. doi: 10.1038/nsmb0607-461.
  11. Majidinia M, Yousefi B. DNA repair and damage pathways in breast cancer development and therapy. DNA Repair (Amst). 2017;54:22-29. doi: 10.1016/j.dnarep.2017.03.009.
  12. Al Zoubi MS, Zavaglia K, Mazanti C, et al. Polymorphisms and mutations in GSTP1, RAD51, XRCC1 and XRCC3 genes in breast cancer patients. Int J Biol Markers. 2017;32(3):e337-e343. doi: 10.5301/ijbm.5000258.
  13. Tulbah S, Alabdulkarim H, Alanazi M, et al. Polymorphisms in RAD51 and their relation with breast cancer in Saudi females. Onco Targets Ther. 2016;9:269-277. doi: 10.2147/OTT.S93343.
  14. Trang TT, Nagashima H, Uchida T, et al. RAD51 G135C genetic polymorphism and their potential role in gastric cancer induced by Helicobacter pylori infection in Bhutan. Epidemiol Infect. 2016;144(2):234-40. doi: 10.1017/S0950268815001430.
  15. Krivokuca AM, Cavic MR, Malisic EJ, et al. Polymorphisms in cancer susceptibility genes XRCC1, RAD51 and TP53 and the risk of breast cancer in Serbian women. Int J Biol Markers. 2016;31(3):e258-263. doi: 10.5301/jbm.5000201.
  16. Al-Zoubi MS, et al. Homozygous T172T and Heterozygous G135C Variants of Homologous Recombination Repairing Protein RAD51 are Related to Sporadic Breast Cancer Susceptibi¬lity. Biochem Genet. 2016;54(1):83-94. doi: 10.1007/s10528-015-9703-z.
  17. Sekhar D, Pooja S, Kumar S, Rajender S. RAD51 135G>C substitution increases breast cancer risk in an ethnic-specific manner: a meta-analysis on 21,236 cases and 19,407 controls. Sci Rep. 2015;5:11588. doi: 10.1038/srep11588.
  18. Pelttari LM, Kiiski JI, Ranta S, et al. RAD51, XRCC3, and XRCC2 mutation screening in Finnish breast cancer families. Springerplus. 2015;4:92. doi: 10.1186/s40064-015-0880-3.
  19. Nowacka-Zawisza M, Wisnik E, Wasilewski A, et al. Polymorphisms of homologous recombination RAD51, RAD51B, XRCC2, and XRCC3 genes and the risk of prostate cancer. Anal Cell Pathol (Amst). 2015;2015:828646. doi: 10.1155/2015/828646.
  20. Hu X, Sun S. RAD51 Gene 135G/C polymorphism and ovarian cancer risk: a meta-analysis. Int J Clin Exp Med. 2015;8(12):22365-22370.
  21. Cetinkunar S, Gok I, Celep RB, et al. The effect of polymorphism in DNA repair genes RAD51 and XRCC2 in colorectal cancer in Turkish population. Int J Clin Exp Med. 2015;8(2):2649-2655.
  22. Maacke H, Opitz S, Jost K, et al. Over-expression of wild-type RAD51 correlates with histological grading of invasive ductal breast cancer. Int J Cancer. 2000;88(6):907-13. doi: 10.1002/1097-0215(20001215)88:6<907::aid-ijc11>3.0.co;2-4.
  23. Maacke H, Jost K, Opitz S, et al. DNA repair and recombination factor RAD51 is over-expressed in human pancreatic adenocarcinoma. Oncogene. 2000;19(23):2791-2795. doi: 10.1038/sj.onc.1203578.
  24. Kato M, Yano K, Matsuo F, et al. Identification of RAD51 alteration in patients with bilateral breast cancer. J Hum Genet. 2000;45(3):133-137. doi: 10.1007/s100380050199.
  25. Thomas G, Jacobs KB, Kraft P, et al. A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat Genet. 2009;41(5):579-584. doi: 10.1038/ng.353.
  26. Li Y, Wang WY, Xiao JH, et al. Overexpression of RAD51 Predicts Poor Prognosis in Colorectal Cancer: Our Experience with 54 Patients. PLoS One. 2017;12(1):e0167868. doi: 10.1371/journal.pone.0167868.
  27. Thompson LH, Schild D. Recombinational DNA repair and human disease. Mutat Res. 2002;509(1-2):49-78. doi: 10.1016/s0027-5107(02)00224-5.
  28. Stark JM, Pierce AJ, Oh J, et al. Genetic steps of mammalian homologous repair with distinct mutagenic consequences. Mol Cell Biol. 2004;24(21):9305-9316. doi: 10.1128/MCB.24.21.9305-9316.2004.
  29. Paffett KS, Clikeman JA, Palmer S, Nickoloff JA. Overexpression of RAD51 inhibits double-strand break-induced homologous recombination but does not affect gene conversion tract lengths. DNA Repair (Amst). 2005;4(6):687-698. doi: 10.1016/j.dnarep.2005.03.003.
  30. Brown ET, Holt JT. RAD51 overexpression rescues radiation resistance in BRCA2-defective cancer cells. Mol Carcinog. 2009;48(2):105-109. doi: 10.1002/mc.20463.
  31. Ricks-Santi LJ, Sucheston LE, Yang Y, et al. Association of RAD51 polymorphism with DNA repair in BRCA1 mutation carriers and sporadic breast cancer risk. BMC Cancer. 2011;11:278. doi: 10.1186/1471-2407-11-278.
  32. Li W, Liu KJ, Song JS, et al. Association between RAD51 polymorphism and breast cancer susceptibility: a meta analysis. Int J Clin Exp Med. 2015;8(2): 2326-2333.
  33. Al Zoubi MS. X-ray repair cross-complementing protein 1 and 3 polymorphisms and susceptibility of breast cancer in a Jordanian population. Saudi Med J. 2015;36(10):1163-1167. doi: 10.15537/smj.2015.10.12659.
  34. Auranen A, Song H, Waterfall C, et al. Polymorphisms in DNA repair genes and epithelial ovarian cancer risk. Int J Cancer. 2005;117(4):611-8. doi: 10.1002/ijc.21047.
  35. Poplawski T, Arabski M, Kozirowska D, et al. DNA damage and repair in gastric cancer – a correlation with the hOGG1 and RAD51 genes polymorphisms. Mutat Res. 2006;601(1-2):83-91. doi: 10.1016/j.mrfmmm.2006.06.002.
  36. Jakubowska A, Gronwald J, Menkiszak J, et al. The RAD51 135 G>C polymorphism modifies breast cancer and ovarian cancer risk in Polish BRCA1 mutation carriers. Cancer Epidemiol Biomarkers Prev. 2007;16(2):270-275. doi: 10.1158/1055-9965.EPI-06-0562.
  37. Parvin S, Islam MS, Al-Mamun MM, et al. Association of BRCA1, BRCA2, RAD51, and HER2 gene polymorphisms with the breast cancer risk in the Bangladeshi population. Breast Cancer. 2017;24(2):229-237. doi: 10.1007/s12282-016-0692-5.
  38. Cheng D, Shi H, Zhang K, et al. RAD51 Gene 135G/C polymorphism and the risk of four types of common cancers: a meta-analysis. Diagn Pathol. 2014;9:18. doi: 10.1186/1746-1596-9-18.
  39. Dhillon VS, Yeoh E, Fenech M. DNA repair gene polymorphisms and prostate cancer risk in South Australia – results of a pilot study. Urol Oncol. 2011;29(6):641-6. doi: 10.1016/j.urolonc.2009.08.013.
  40. Park JY, Huang Y, Sellers TA. Single nucleotide polymorphisms in DNA repair genes and prostate cancer risk. Methods Mol Biol. 2009;471:361-385. doi: 10.1007/978-1-59745-416-2_18.
  41. Henriquez-Hernandez LA, Valenciano A, Foro-Arnalot P, et al. Single nucleotide polymorphisms in DNA repair genes as risk factors associated to prostate cancer progression. BMC Med Genet. 2014;15:143. doi: 10.1186/s12881-014-0143-0.
  42. Mitra A, Jameson C, Barbachano Y, et al. Overexpression of RAD51 occurs in aggressive prostatic cancer. Histopathology. 2009;55(6):696-704. doi: 10.1111/j.1365-2559.2009.03448.x.
  43. Bristow RG, Ozcelik H, Jalali F, et al. Homologous recombination and prostate cancer: a model for novel DNA repair targets and therapies. Radiother Oncol. 2007;83(3):220-230. doi: 10.1016/j.radonc.2007.04.016.
  44. Hasselbach L, Haase S, Fischer D, et al. Characterisation of the promoter region of the human DNA-repair gene RAD51. Eur J Gynaecol Oncol. 2005;26(6):589-598.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Illustration of RAD51 gene describing the location of the target area on chromosome 15 including 10 exons. The primers positions and the expected product size (187 bp) are shown. The amplified area is including part of exon 1 and intron 1

Download (31KB)
3. Fig. 2. A representative gel electrophoresis for the PCR product of the target sequence located in the 5'-UTR area of the RAD51 gene. Lane L: 100 bp marker, Lanes 1-5 positive product and Lane Neg: Negative control

Download (189KB)
4. Fig. 3. Chromatogram of the target sequences in the 5’-UTR-RAD51 area. a, b and c represent the GG, GC and CC genotypes of the rs1801320 G>C polymorphism. d, e and f represent the GG, GT and TT genotypes of the rs1801321 G>T polymorphism

Download (455KB)

Copyright (c) 2018 Al-Zoubi M.S., Al-Batayneh K., Al Trad B., Alorjani M., Al Bashir S., Al-Zoubi R., Al-Zoubi R., Al-Khatib S.M., Al Hamad M., Abd Al-Razaq M., Muhaidat R., Matalka I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies