Moderate thermophilic chemoorganoheterotrophic bacterium in surface layer of anthropogenic grounds of industrial estate area of Al-Mafraq, Jordan

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Surface of oil-contaminated soil from Industrial Estate of Al-Mafraq city, Jordan, was investigated for the presence of aerobic oil-degrading moderately thermophilic bacteria. A pure culture of spore – forming aerobic chemoorganogeterotrophic rod shaped bacterial isolate, designated as strain j3n, was obtained. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain j3n is closely related to gram-positive bacteria of kaustophilus – thermoleovorans cluster of Geobacillus genus. Strain j3n grew aerobically with oil, hexadecane, benzoate and acetate. Growth data indicated that utilization of hexadecane but not of oil and benzoate might be under catabolite repression control. Possibility of a regulation of alkane degradation by acetate in aerobic thermophilic gram-positive bacteria of Geobacillus spp. was shown for the first time.

About the authors

Alexander S. Galushko

Agrophysical Research Institute

Email: galushkoas@inbox.ru
ORCID iD: 0000-0002-0387-7997
SPIN-code: 9759-9942
Scopus Author ID: 6603847300
ResearcherId: I-4980-2015

PhD, Cand. Sci. (Med.)

Russian Federation, 14, Grazhdansky av., Saint Petersburg, 195220

Snezanna K. Ibryaeva

Agrophysical Research Institute

Email: snezhanna.ibryaeva@yandex.ru
ORCID iD: 0000-0001-8618-5795

student

Russian Federation, 14, Grazhdansky av., Saint Petersburg, 195220

Anna S. Zhuravleva

Agrophysical Research Institute

Email: zhuravlan@gmail.com
ORCID iD: 0000-0001-7204-9653
SPIN-code: 3084-1394
Scopus Author ID: 57221754069
ResearcherId: I-8764-2018

junior researcher, postgraduate student

Russian Federation, 14, Grazhdansky av., Saint Petersburg, 195220

Gayane G. Panova

Agrophysical Research Institute

Email: gaiane@inbox.ru
ORCID iD: 0000-0002-1132-9915
SPIN-code: 9260-4501
Scopus Author ID: 7003272258
ResearcherId: AAN-6594-2020

PhD, Cand. Sci. (Med.), major researcher

Russian Federation, 14, Grazhdansky av., Saint Petersburg, 195220

Jacob H. Jacob

Al al-Bayt University

Author for correspondence.
Email: jjacob@aabu.edu.jo
ORCID iD: 0000-0003-2410-822X
Scopus Author ID: 36025359900

PhD, Professor

Jordan, P.O. Box 1106 Irbid 21110 - JORDAN

References

  1. Moeck IS. Catalog of geothermal play types based on geologic controls. Renewable and Sustainable Energy Reviews. 2014;37:867–882. doi: 10.1016/j.rser.2014.05.032
  2. Mehta D, Satyanarayana T. Diversity of hot environments and thermophilic microbes. Satyanarayana T, Littlechild J, Kawarabayasi Y, editors. Thermophilic Microbes in Environmental and Industrial Biotechnology. Netherlands, Dordrecht: Springer, 2013. 3–60 p. doi: 10.1007/978-94-007-5899-5_1
  3. Portillo MC, Santana M, Gonzalez JM. Presence and potential role of thermophilic bacteria in temperate terrestrial environments. Naturwissenschaften. 2012;99(1):43–53. doi: 10.1007/s00114-011-0867-z
  4. Aanniz T, Ouadghiri M, Melloul M, et al. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils. Braz J Microbiol. 2015;46(2):443–453. doi: 10.1590/S1517-838246220140219
  5. Wong ML, An D, Caffrey SM, et al. Roles of thermophiles and fungi in bitumen degradation in mostly cold oil sands outcrops. Appl Environ Microbiol. 2015;81(19):6825–6838. doi: 10.1128/AEM.02221-15
  6. Marchant R, Banat IM, Rahman TJ, Berzano M. The frequency and characteristics of highly thermophilic bacteria in cool soil environments. Environ Microbiol. 2002;4(10):595–602. doi: 10.1046/j.1462-2920.2002.00344.x
  7. Banat IM, Marchant R, Rahman TJ. Geobacillus debilis sp. nov., a novel obligately thermophilic bacterium isolated from a cool soil environment, and reassignment of Bacillus pallidus to Geobacillus pallidus comb. nov. Int J Syst Evol Microbiol. 2004;54(6):2197–2201. doi: 10.1099/ijs.0.63231-0
  8. Rahman TJ, Marchant R, Banat IM. Distribution and molecular investigation of highly thermophilic bacteria associated with cool soil environments. Biochem Soc Trans. 2004;32(2):209–221. doi: 10.1042/bst0320209
  9. Marchant R, Franzetti A, Pavlostathis SG, et al. Thermophilic bacteria in cool temperate soils: are they metabolically active or continually added by global atmospheric transport? Appl Microbiol Biotechnol. 2008;78(5):841–852. doi: 10.1007/s00253-008-1372-y
  10. Schäffer R, Sass I. The thermal springs of Jordan. Environ Earth Sci. 2014;72(1):171–187. doi: 10.1007/s12665-013-2944-4
  11. Al-Zyoud S. Shallow geothermal energy resources for future utilization in Jordan. Open J Geol. 2019;9(11):783–794. doi: 10.4236/ojg.2019.911090
  12. Khalil A, Salim M, Sallal A. Enumeration of thermotolerant bacteria from recreational thermal ponds in Jordan. Cytobios. 1998;96:57–63.
  13. Khalil A. Isolation and characterization of thermophilic Bacillus species from thermal ponds in Jordan. Pak J Biol Sci. 2002;5(11):1272–1273. doi: 10.3923/pjbs.2002.1272.1273
  14. Khalil A, Anfoka G, Bdour S. Isolation of plasmids present in thermophilic strains from hot springs in Jordan. World J Microbiol Biotechnol. 2003;19(3):239–241. doi: 10.1023/A:1023692531885
  15. Elnasser Z, Maraqa A, Owais W, Khraisat A. Isolation and characterization of new thermophilic bacteria in Jordan. Internet J Microbiol. 2006;3(1):201–227.
  16. Malkawi HI, Al-Omari MN. Culture-dependent and culture-independent approaches to study the bacterial and archaeal diversity from Jordanian hot springs. Afr J Microbiol Res. 2010;4(10):923–932.
  17. Al-Batayneh KM, Jacob JH, Hussein EI. Isolation and molecular identification of new thermophilic bacterial strains of Geobacillus pallidus and Anoxybacillus flavithermus. Int J Integr Biol. 2011;11(1):39–43.
  18. Alkhalili RN, Hatti-Kaul R, Canbäck B. Genome sequence of Geobacillus sp. strain ZGt-1, an antibacterial peptide-producing bacterium from hot springs in Jordan. Genome Announc. 2015;3(4): e00799–15. doi: 10.1128/genomeA.00799-15
  19. Hussein EI, Jacob JH, Shakhatreh MAK, et al. Exploring the microbial diversity in Jordanian hot springs by comparative metagenomic analysis. Microbiol Open. 2017;6(6): e521. doi: 10.1002/mbo3.521
  20. Hussein EI, Jacob JH, Shakhatreh M, et al. Detection of antibiotic-producing Actinobacteria in the sediment and water of Ma’in thermal springs (Jordan). Germs. 2018;8(4):191–198. doi: 10.18683/germs.2018.1146
  21. Mohammad BT, Al Daghistani HI, Jaouani A, et al. Isolation and characterization of thermophilic bacteria from Jordanian hot springs: Bacillus licheniformis and Thermomonas hydrothermalis isolates as potential producers of thermostable enzymes. Int J Microbiol. 2017;2017:6943952. doi: 10.1155/2017/6943952
  22. Shakhatreh MAK, Jacob JH, Hussein EI, et al. Microbiological analysis, antimicrobial activity, and heavy-metals content of Jordanian Ma’in hot-springs water. J Infect Public Health. 2017;10(6):789–793. doi: 10.1016/j.jiph.2017.01.010
  23. Abu-Rumman G, Khdair AI, Khdair SI. Current status and future investment potential in renewable energy in Jordan: An overview. Heliyon. 2020;6(2): e03346. doi: 10.1016/j.heliyon.2020.e03346
  24. Mohammadipanah F, Wink J. Actinobacteria from arid and desert habitats: diversity and biological activity. Front Microbiol. 2015;6:1541. doi: 10.3389/fmicb.2015.01541
  25. Abed RMM, Tamm A, Hassenrück C, et al. Habitat-dependent composition of bacterial and fungal communities in biological soil crusts from Oman. Sci Rep. 2019;9:6468. doi: 10.1038/s41598-019-42911-6
  26. Voroshilova AA, Dianova EV. Okislyayushchie neft’ bakterii – pokazateli intensivnosti biologicheskogo okisleniya nеfti v prirodnykh usloviyakh. Mikrobiologiya. 1952;21(4):408–415. (In Russ.)
  27. Palatinszky M, Herbold C, Jehmlich N, et al. Cyanate as an energy source for nitrifiers. Nature. 2015;524(7563):105–108. doi: 10.1038/nature14856
  28. Altschul S, Gish W, Miller W, et al. A basic local alignment search tool. J Mol Biol. 1990;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2
  29. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–1874. doi: 10.1093/molbev/msw054
  30. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10(3):512–526. doi: 10.1093/oxfordjournals.molbev.a040023
  31. Zeigler DR. The Geobacillus paradox: why is a thermophilic bacterial genus so prevalent on a mesophilic planet? Microbiology (UK). 2014;160(1):1–11. doi: 10.1099/mic.0.071696-0
  32. Portillo MC, Gonzalez JM. Microbial communities and immigration in volcanic environments of Canary Islands (Spain). Naturwissenschaften. 2008;95(4):307–315. doi: 10.1007/s00114-007-0330-3
  33. Perfumo A, Marchant R. Global transport of thermophilic bacteria in atmospheric dust. Environ Microbiol Rep. 2010;2(2):333–339. doi: 10.1111/j.1758-2229.2010.00143.x
  34. Tourova P, Korshunova AV, Mikhailova EM, et al. Application of gyrB and parE sequence similarity analyses for differentiation of species within the genus Geobacillus. Microbiology. 2010;79(3): 356–369. doi: 10.1134/S0026261710030124
  35. Zeigler DR. Application of a recN sequence similarity analysis to the identification of species within the bacterial genus Geobacillus. Int J Syst Evol Microbiol. 2005;55(3):1171–1179. doi: 10.1099/ijs.0.63452-0
  36. Aliyu H, Lebre P, Blom J, et al. Phylogenomic re-assessment of the thermophilic genus Geobacillus. Sys Appl Microbiol. 2016;39(8):527–523. doi: 10.1016/j.syapm.2016.09.004
  37. Semenova EM, Sokolova DS, Grouzdev DS, et al. Geobacillus proteiniphilus sp. nov., a thermophilic bacterium isolated from a high-temperature heavy oil reservoir in China. Int J Syst Evol Microbiol. 2019;69(10):3001–3008. doi: 10.1099/ijsem.0.003486
  38. Magasanik B. Catabolite repression. Cold Spring Harb Symp Quant Biol. 1961;26:249–256. doi: 10.1101/sqb.1961.026.01.031
  39. Van Eyk J, Bartels TJ. Paraffin oxidation in Pseudomonas aeruginosa. I. Induction of paraffin oxidation. J Bacteriol. 1968;96(3):706–712. doi: 10.1128/JB.96.3.706–712.1968
  40. Marín MM, Smits TH, van Beilen JB, Rojo F. The alkane hydroxylase gene of Burkholderia cepacia RR10 is under catabolite repression control. J Bacteriol. 2001;183(14):4202–4209. doi: 10.1128/JB.183.14.4202-4209.2001
  41. Deutscher J. The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol. 2008;11(2):87–93. doi: 10.1016/j.mib.2008.02.007
  42. Görke B, Stülke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nature Rev Microbiol. 2008;6(8):613–624. doi: 10.1038/nrmicro1932
  43. Cappelletti M, Fedi S, Frascari D, et al. Analyses of both the alkB gene transcriptional start site and alkB promoter-inducing properties of Rhodococcus sp. strain BCP1 grown on n-alkanes. Appl Environ Microbiol. 2011;77(5):1619–1627. doi: 10.1128/AEM.01987-10
  44. Liang JL, Nie Y, Wang M, et al. Regulation of alkane degradation pathway by a TetR family repressor via an autoregulation positive feedback mechanism in a Gram-positive Dietzia bacterium. Mol Microbiol. 2016;99(2):338–359. doi: 10.1111/mmi.13232
  45. Ji N, Wang X, Yin C, et al. CrgA protein represses AlkB2 monooxygenase and regulates the degradation of medium-to-long-chain n-alkanes in Pseudomonas aeruginosa SJTD-1. Front Microbiol. 2019;10:400. doi: 10.3389/fmicb.2019.00400
  46. Gregson BH, Metodieva G, Metodiev MV, et al. Protein expression in the obligate hydrocarbon-degrading psychrophile Oleispira antarctica RB-8 during alkane degradation and cold tolerance. Environ Microbiol. 2020;22(5):1870–1883. doi: 10.1111/1462-2920.14956
  47. Feng L, Wang W, Cheng J, et al. Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80–2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci USA. 2007;104(13):5602–5607. doi: 10.1073/pnas.0609650104
  48. Cordova LT, Long CP, Venkataramanan KP, Antoniewicz MR. Complete genome sequence, metabolic model construction and phenotypic characterization of Geobacillus LC300, an extremely thermophilic, fast growing, xylose-utilizing bacterium. Metab Eng. 2015;32:74–81. doi: 10.1016/j.ymben.2015.09.009
  49. Ravcheev DA, Khoroshkin MS, Laikova ON, et al. Comparative genomics and evolution of regulons of the LacI-family transcription factors. Front Microbiol. 2014;5:294. doi: 10.3389/fmicb.2014.00294
  50. Suvorova IA, Korostelev YD, Gelfand MS. GntR family of bacterial transcription factors and their DNA binding motifs: structure, positioning and co-evolution. PLoS One. 2015;10(7): e0132618. doi: 10.1371/journal.pone.0132618
  51. Mohamed ME, Al-Dousary M, Hamzah RY, Fuchs G. Isolation and characterization of indigenous thermophilic bacteria active in natural attenuation of bio-hazardous petrochemical pollutants. Int Biodeterior Biodegrad. 2006;58(3–4):213–223. doi: 10.1016/j.ibiod.2006.06.022

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Phylogenetic position of strain j3n based on the 16S rRNA gene sequences. Clustering was inferred by using the Maximum Likelihood method based on the Tamura–Nei model [30]. The tree with the highest log likelihood is shown. Bar – 0.001 substitutions per nucleotide position

Download (105KB)
3. Fig. 2. Growth of strain j3n (shown as change of optical density) by acetate, hexadecane, benzoate and oil utilization. Medium without organic substrates inoculated by bacteria served as control. Axis: Y – OD (optical density of culture at 578 nm), X – time of cultivation (days)

Download (104KB)

Copyright (c) 2021 ООО "Эко-Вектор"


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies