The role of archaea in the origin of eukaryotes

Cover Page

Cite item

Full Text

Abstract

A key role of particular evolutionary branch of archaea in the emergence of eukaryotic cell is considered on the basis of phylogenomics. Genomes of recently discovered uncultivated proteoarchaea belonging to Lokiarchaea and Asgard-group contain a large sets of eukaryotic-like genes. This allows to suggest that ancient forms of such archaean could participate in symbiotic fusion with bacteria serving as a mitochondrial progenitor. The open questions concerning properties of LECA (so-called last eukaryotic common ancestor) are discussed in the frame of endosymbiotic hypothesis of eukaryogenesis.

About the authors

Sergey V. Shestakov

N. Vavilov Institute of General Genetics, RAS

Author for correspondence.
Email: shestakovgen@mail.ru

dr. biol. sciences, professor, main researcher

Russian Federation, 119991, Moscow, Gubkin str. 3

References

  1. Koonin E. Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier? Phyl Trans R Soc B. 2015;370(1678):20140333. doi: 10.1098/rstb.2014.0333.
  2. Embley TM, Williams TA. Evolution: Steps on the road to eukaryotes. Nature. 2015;521:169-170. doi: 10.1038/nature14522.
  3. Guy L, Ettema TJG. The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol. 2011;19(12):580-587. doi: 10.1016/j.tim.2011.09.002.
  4. Koonin EV, Yutin N. The dispersed archaeal eukaryome and the complex archaeal ancestor of eukaryotes. Cold Spring Harb Perspect Biol. 2014;6: a016188.
  5. Spang A, Saw JH, Jörgensen SL, et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature. 2015;521:173-184. doi: 10.1038/nature14447.
  6. Zaremba-Niedzwiedzka K, Caceres EF, Saw JH. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature. 2017;541(7637):353-358. doi: 10.1038/nature21031.
  7. Seitz KW, Lazar KS, Hinrichs K-U, et al. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J. 2016;10:1696-1705. doi: 10.1038/ismej.2015.233.
  8. Woese CR, Kandler G, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA. 1990;87(12):4576-4579.
  9. Matte-Tailliez O, Brochier C, Forterre P, Philippe H. Archaeal phylogeny based on ribosomal proteins. Mol Biol Evol. 2002;19(5):631-639.
  10. Petitjean C, Deschamps P, Lopez-Garcia P, Moreira D. Rooting the domain Archaea by phylogenomic analysis supports the foundation of the new kingdom Proteoarchaeota. Genome Biol Evol. 2014;7(1):191-204. doi: 10.1093/gbe/evu274.
  11. Williams TA, Szölösi GL, Spang A, et al. Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc Natl Acad Sci USA. 2017;114(23): E4602-E4611. doi: 10.1073/pnas.1618463114.
  12. Hug LA, Baker BJ, Anantharaman K, et al. A new view of the tree of life. Nature Microbiol. 2016;1:1-5. doi: 10.1038/nmicrobiol.2016.48.
  13. Papke RT, Corall P, Ram-Mohan N, et al. Horizontal gene transfer, dispersal and Haloarchaeal speciation. Life. 2015;5(2):1405-1426. doi: 10.3390/life5021405.
  14. Martin W, Russell MJ. On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans R Soc Lond B Biol Sci. 2007;362:1887-25. doi: 10.1098/rstb.2006.1881.
  15. Bonch-Osmolovskaya EA, Ravin NV. Analysis of full genomes: a new stage in the development of microbiology. Herald of Russian Academy of Sciences. 2010;80(5):491-8.
  16. Lebedinski AV, Mardanov AV, Kublanov IV, et al. Analysis of the complete genome of Fervidococcus fontisconfirms the distinct phylogenetic position of the order Fervidicoccales and suggests its environmental function. Extremophiles. 2014;18:295-309.
  17. Brouchier-Armanet C, Boussau B, Gribaldo S, Forterre P. Mesophilic crenarchaeota: proposal for a third phylum, the Thaumarchaeota. Nat Rev Microbiol. 2008;6:245-52.
  18. Nunoura T, Takaki Y, Kakuta J, et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res. 2011;39(8):3204-3223. doi: 10.1093/nar/gkq1228.
  19. Elkins JG, Podar M, Graham DE, et al. A korarchaeal genome reveals insights into the evolution of the Archaea. Proc Natl Acad Sci USA. 2008;105(23):8102-7. doi: 10.1073/pnas.0801980105.
  20. Meng J, Xu J, Qin D, et al. Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. ISME J. 2014;8(3):650-659. doi: 10.1038/ismej.2013.174.
  21. Rinke C, Schwientec P, Sczyrba A, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 2013;499:431-437. doi: 10.1038/nature12352.
  22. Baker BJ, Comolli LR, Dick GJ, et al. Enigmatic, ultrasmall, uncultivated Archaea. Proc Natl Acad Sci USA. 2010;107:8806-8811. doi: 10.1073/pnas.0914470107.
  23. Narasingarao P, Podell S, Ugalde J, et al. De novo metagenomics assembly reveals abundant novel major lineage of archaea in hypersaline microbial communities. ISME J. 2012;6(1):81-93. doi: 10.1038/ismej.2011.78.
  24. Castelle CJ, Wrighton KC, Thomas BC, et al. Genomic expansion of domain Archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr Biol. 2015;25(6):690-701. doi: 10.1016/j.cub.2015.01.014.
  25. Waters E, Hohn MJ, Ahel I. The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci USA. 2003;100(22):12984-8. doi: 10.1073/pnas.1735403100.
  26. Koonin EV. The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biol. 2010;11:209. doi: 10.1186/gb-2010-11-5-209.
  27. Makarova KS, Koonin EV. Archaeal ubiquitin-like proteins: functional versality and putative ancestrial involvement in tRNA modification revealed by comparative genomic analysis. Archaea. 2010;710303. doi: 10.1155/2010/710303.
  28. Maupin-Furlow JA. Ubiquitin-like proteins and their roles in archaea. Trends Microbiol. 2013;21(1):31-38. doi: 10.1016/j.tim.2012.09.006.
  29. Grau-Bove X, Sebe-Pedros A, Ruitz-Trillo I. The eukaryotic ancestor had a complex ubiquitin signaling system of Archaeal origin. Mol Biol Evol. 2015;32(3):726-739. doi: 10.1093/molbev/msu334.
  30. Ettema TJG, Lindas A-C, Bernander R. An actin-based cytoskeleton in archaea. Mol Microbiol. 2011;80(4):1052-61. doi: 10.1111/j.1365-2958.2011.07635.x.
  31. Bernander R, Lind AE, Ettema TJG. An archaeal origin for the actin cytoskeleton: implication for eukaryogenesis. Commun Integr Biol. 2011;4(6):644-667. doi: 10.4161/cib.16974.
  32. Yutin N, Koonin EV. Archaeal origin of tubulin. Biol Direct. 2012;7:10. doi: 10.1186/1745-6150-7-10.
  33. Samson RY, Obita T, Freund SH, et al. A role for the ESCRT system in cell division in Archaea. Science. 2008;322(5908):1710-1713. doi: 10.1126/science.1165322.
  34. Lindas AC, Karlsson EA, Lindgren MT, et al. A unique cell division machinery in the Archaea. Proc Natl Acad Sci USA. 2008;105(48):18942-18946. doi: 10.1073/pnas.0809467105.
  35. Makarova KS, Yutin N, Bell SD, Koonin EV. Evolution of diverse cell division and vesicle formation systems in Archaea. Nat Rev Microbol. 2010;8:731-741. doi: 10.1038/nrmicro2406.
  36. Dey G, Thattai M, Baum B. On the archaeal origins of eukaryotes and the challenges of inferring phenotype from genotype. Trends Cell Biol. 2016;26(7):476-485. doi: 10.1016/j.tcb.2016.03.009.
  37. Surkont J, Pereira-Leal JB. Are there Rab GTPases in Archaea. Mol Biol Evol. 2016;33(7):1833-1842. doi: 10.1093/molbev/msw061.
  38. Klinger CM, Spang A, Dacks JB, Ettema TJG. Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks. Mol Biol Evol. 2016;33(6):1528-41. doi: 10.1093/molbev/msw034.
  39. Shabalina SA, Koonin EV. Origins and evolution of eukaryotes RNA interference. Trends Ecol Evol. 2008;23(10):578-87. doi: 10.1016/j.tree.2008.06.005.
  40. Makarova KS, Wolf YI, van der Oost J, Koonin EV. Prokaryotic homologs of Argonaute proteins are predicted to function as a key components of a novel system of defense against mobile genetic elements. Biol Direct. 2009;4:29. doi: 10.1186/1745-6150-4-29.
  41. Poole AM, Denny D. Evaluating hypothesis for the origin of eukaryotes. BioEssays. 2007;29(1):74-84. doi: 10.1002/bies.20516.
  42. McInerney JO, O’Connel MJ, Pisani D. The hybrid nature of the Eukaryota and consilient view of life on Earth. Nat Rev Microbiol. 2014;12(6):449-455. doi: 10.1038/nrmicro3271.
  43. Martin WF, Garg S, Zimorsky V. Endosymbiotic theories for eukaryote origin. Phyl Trans R Soc B. 2015;370:20140330. doi: 10.1098/rstb.2014.0330.
  44. Raymann K, Brochier-Armanet C, Gribaldo S. The two-domain tree of life is linked to a new root for the Archaea. Proc Natl Acad Sci USA. 2015;112(21):6670-6675. doi: 10.1073/pnas.1420858112.
  45. Williams TA, Foster PG, Cox CJ, Embley TM. An archaeal origin of eukaryotes supports only two primary domains of life. Nature. 2013;504:231-236. doi: 10.1038/nature12779.
  46. Cox CJ, Foster PJ, Hirt RP, et al. The archaebacterial origin of eukaryotes. Proc Natl Acad Sci USA. 2008;105(51):20356-20361. doi: 10.1073/pnas.0810647105.
  47. Villanueva L, Schouten S, Damste JSS. Phylogenomic analysis of lipid biosynthetic genes of archaea shed light on the “lipid divide”. Environ Microbiol. 2017;19(1):54-69. doi: 10.1111/1462-2020.13361.
  48. Lombard J, Lopez-Garcia P, Moreira D. The early evolution of lipid membranes and the three domains of life. Nature Rev Microbiol. 2012;10(7):507-515. doi: 10.1038/nrmicro2815.
  49. Lopez-Garcia P, Moreira D. Open questions on the origin of eukaryotes. Trends Ecol Evol. 2015;30(11):697-708. doi: 10.1016/j.tree.2015.09.00.
  50. Pittis AA, Gabaldon T. Late acquisition of mitochondria by a host with chimeric prokaryotes ancestry. Nature. 2016;531:101-104. doi: 10.1038/nature13805.
  51. Nelson-Sathi S, Sousa FL, Roettger M, et al. Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature. 2015;517(7532):77-80. doi: 10.1038/nature13805.
  52. Deschamps P, Zivanovic Y, Moreira D, et al. Pangenome evidence for extensive interdomain horizontal transfer affecting lineage core and shell genes in uncultured planktonic Thaumarchaeota and Euryarchaeota. Genome Biol Evol. 2014;6(7):1549-1563. doi: 10.1093/gbe/evu127.
  53. Akkani WA, Siu-Ting K, Creevey CJ, et al. Horizontal gene flow from Eubacteria to Archaebacteria and what it means for our understanding of eukaryogenesis. Philos Trans R Soc Lond B Biol Sci. 2015;370:20140337. doi: 10.1098/rstb.2014.0337.
  54. Yutin N, Wolf M, Wolf Y, Koonin EV. The origins of phagocytosis and eukaryogenesis. Biol Direct. 2009;4:9. doi: 10.1186/1745-6150-4-9.
  55. Martijn J, Ettema TJ. From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cells. Biochem Soc Trans. 2013;41(1):451-457. doi: 10.1042/BST20120292.
  56. Martin W, Miller M. The hydrogen hypothesis for the first eukaryote. Nature. 1998;392:37-41. doi: 10.1038/32096.
  57. Sousa FL, Neukirchen S, Allen JF, et al. Lokiarchaeon is hydrogen dependent. Nat Microbiol. 2016;1:16034. doi: 10.1038/nmicrobiol.2016.34.
  58. Martin WF, Neukirchen S, Zimorski V, et al. Energy for two: new archaeal lineages and the origin of mitochondria. Bioessays. 2016;38(9):850-856. doi: 10.1002/bies.201600089.
  59. Gould SB, Garg SG, Martin WF. Bacterial vesicle secretion and the evolutionary origin of the eukaryotic endomembrane system. Trends Microbiol. 2016;24(7):525-34. doi: 10.1016/j.tim.2016.03.005.
  60. Evans PN, Parks DH, Chadwick GL, et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science. 2015;350:434-438. doi: 10.1126/science.aac7745.
  61. He Y, Li M, Perumal V, et al. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nat Microbiol. 2016;1(6):16035. doi: 10.1038/nmicrobiol.2016.35.
  62. Eme L, Doolitle WF. Archaea. Current Biol. 2015;25(19): R851-R855. doi: 10.1016/j.cub.2015.05.025.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Table to the article of S.V.Shestakov
Download (48KB)
3. Fig. 1. Phylogenetic relationships among archaea (without detection of distances between branches)

Download (114KB)

Copyright (c) 2017 Shestakov S.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies