Variability of cytogenetic disturbances in Lonicera caerulea (blue honeysuckle) population in an active fault zone

Cover Page

Cite item

Full Text

Abstract

Summary: Background. In active fault zones, geophysical and geochemical anomalies may have a genotoxic effect on plants growing there, as one of the factors of evolutionary transformation of plant populations.

Materials and methods. We applied a cytogenetic analysis to evaluate the genotoxic effect on a Lonicera caerulea L. (blue honeysuckle) natural population in one of the active fault zones in the Altai Mountains.

Results. We derived principal cytogenetic indices (i.e., mitotic, prophase, metaphase, anaphase, and telophase indices as well as proportion and range of abnormal mitoses) for meristematic cells of Lonicera caerulea seedlings. The increase in the mitotic activity of meristematic cells from the sites in the local fault zone is connected with the occurrence of the prophase-metaphase block to prevent consequences of an increased cell death (as a result of abnormal mitoses in these phases) and to compensate their losses by a greater number of divisions. We observed the increase in the proportion of abnormal mitoses in samples from almost all the test sites, compared with the control site. This demonstrates the increase in the genotoxic effect of geophysical and geochemical anomalies in these sites. The range of abnormal mitoses of samples from all the test sites shows the increase in the proportion of abnormalities in metaphase, compared to the control site where they can be equally found in metaphase, anaphase, and telophase.

Conclusion. The results demonstrate changes of mitotic activity, frequency of occurrence and the spectrum of mitotic anomalies in the root meristem of blue honeysuckle, which grows in conditions with contrast geophysical characteristics.

About the authors

Irina G Boyarskikh

Central Siberian Botanical Garden, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: irina_2302@mail.ru

канд. биол. наук, старший научный сотрудник лаборатории интродукции пищевых растений

Russian Federation, Novosibirsk, Russia

Alena I Kulikova

Central Siberian Botanical Garden, Siberian Branch, Russian Academy of Sciences

Email: kulikovaai@ngs.ru

младший научный сотрудник лаборатории интродукции пищевых растений

Russian Federation, Novosibirsk, Russia

References

  1. Handy MR, Hirth G, Hovius N, editors. Tectonic Faults: Agents of Change on a Dynamic Earth. Cambridge: MIT Press; 2007.
  2. Florinsky IV, editor. Man and the Geosphere. New York: Nova Science; 2010.
  3. Виноградов Б.В. Примеры связи растительности и почв с новейшей тектоникой //Ботанический журнал. – 1955. – Т. 40. – № 6. – С. 837–844. [Vinogradov BV. Examples of relationships between vegetation, soils and neotectonics. Journal Botanique de l’URSS. 1955;40(6):837-844. (In Russ.)]
  4. Бгатов В.И., Лизалек Н.А., Кужельный Н.М., Шаламов И.В. Геологическая среда и наземная растительность. — Новосибирск: СНИИГГИМС, 2007. [Bgatov VI, Lizalek NA, Kuzhelny NM, Shalamov IV. Geological Environment and Terrestrial Vegetation (Exemplified by Siberia). Novosibirsk: Siberian Research Institute of Geology, Geophysics, and Mineral Resources; 2007. (In Russ.)]
  5. Trifonov VG, Karakhanian AS. Active faulting and human environment. Tectonophysics. 2004;380:287-294. doi: 10.1016/j.tecto.2003.09.025.
  6. Кутинов Ю.Г., Чистова. З.Б., Беляев В.В., Бурлаков П.С. Влияние тектонических нарушений (дегазация, наведенные токи, вариации геомагнитного поля) севера Русской плиты на окружающую среду (на примере Архангельской области) // Вестник КРАУНЦ. – 2009. – № 2. – Вып. 14. – С. 77–89. [Kutinov YG, Chistova ZB, Belyaev VV, Burlakov PS. Effects of the tectonic structures (degassing, induced currents, variations of the geomagnetic field) on the environment of the northern part of the Russian Plate (exemplified by the Arkhangelsk Region). Bulletin of the Kamchatka Regional Association “Educational-Scientific Center”. Series Earth Sciences. 2009; 2(14):77-89. (In Russ.)]
  7. Boyarskikh IG, Shitov AV. Intraspecific variability of plants: The impact of active local faults. In Florinsky IV, editor. Man and the Geosphere. New York: Nova Science; 2010. P. 145-167.
  8. Вьюхина А.А., Омельченко Е.И., Шиманская Е.И., и др. Применение методов биотестирования для индикации закономерностей варьирования фенотипических и цитогенетических изменений растений-индикаторов в зависимости от степени тектонической нарушенности зоны произрастания // Известия высших учебных заведений. Северо-Кавказский регион. Естественные науки. – 2013. – № 1. – С. 45–51. [Vyukhina AA, Omelchenko GV, Shimanskaya EI, et al. Application of biotesting methods to indicate variation regularities in phenotypic and cytogenetic changes of plants-indicators depending on the extent of tectonic dislocation of growth zone. Izvestiya Vuzov. Severo-Kavkazskii Region. Series Natural sciences. 2013;(1):45-51. (In Russ.)]
  9. Heads M. A biogeographic review of Parahebe (Scrophulariaceae). Botanical Journal of the Linnean Society. 1994;115(1):65-89. doi: 10.1111/j.1095-8339.1994.tb01769.x.
  10. Heads M. Biogeographic disjunction along the Alpine fault, New Zealand. Biological Journal of the Linnean Society. 1998;63(2):161-176. doi: 10.1006/bijl.1997.0177.
  11. Heads M. Biological disjunction along the West Caledonian fault, New Caledonia: A synthesis of molecular phylogenetics and panbiogeography. Botanical Journal of the Linnean Society. 2008;158(3):470-488. doi: 10.1111/j.1095-8339.2008.00866.x.
  12. Vavilov NI. The theory of the origin of cultivated plants after Darwin. In: Vavilov NI. Origin and Geography of Cultivated Plants. Cambridge: Cambridge University Press; 1992. P. 421-442.
  13. Syvorotkin VL. Hydrogen degassing of the Earth: Natural disasters and the biosphere. In Florinsky IV, editor. Man and the Geosphere. New York: Nova Science Publishers; 2010. P. 307-347.
  14. Grant WF. Chromosome aberrations in plants as a monitoring system. Environmental Health Perspectives. 1978;27:37-43.
  15. Grant WF. Higher plant assays for the detection of genotoxicity in air polluted environments. Ecosystem Health. 1998;4(4):210-229. doi: 10.1046/j.1526-0992.1998.98097.x.
  16. Боярских И.Г., Худяев С.А., Платонова С.Г., и др. Изменение биохимических и морфологических характеристик Lonicera caerulea в тектонически активной зоне долины р. Джазатор (Горный Алтай) // Геофизические процессы и биосфера. – 2011. – T. 10. – № 4. – С. 44–65. [Boyarskikh IG, Khudyaev SA, Platonova SG, et al. Change in biochemical and morphological characteristics of Lonicera caerulea in tectonically active zone of the Dzhazator river valley (Altai Mountains). Izvestiya, Atmospheric and Oceanic Physics. 2012;48(7):747-760. (In Russ.)]. doi: 10.1134/S000143381207002X.
  17. Боярских И.Г., Сысо А.И., Худяев С.А., и др. Особенности элементного и биохимического состава Lonicera caerulea L. в локальной геологически активной зоне Катунского хребта (Горный Алтай) // Геофизические процессы и биосфера. – 2012. – Т. 11. – № 3. – С. 70–84. [Boyarskikh IG, Syso AI, Khudyaev SA, et al. Specific features of elemental and biochemical composition of Lonicera caerulea L. in local geologically active zone of the Katun Range (Altai Mountains). Geophysical Processes and Biosphere. 2012;11(3):70-84. (In Russ.)]
  18. Куликова А.И., Боярских И.Г. Особенности формирования репродуктивных структур у тератной формы Lonicera caerulea (Caprifoliaceae) // Ботанический журнал. – 2014. – Т. 99. – № 2. – С. 193–205. [Kulikova AI, Boyarskikh IG. Peculiarities of reproductive structures formation in the abnormal form of Lonicera caerulea subsp. altaica (Caprifoliaceae). Botanical Journal (Moscow). 2014;99(2):193-205. (In Russ.)]
  19. Лукина Н.В. Активные разломы и сейсмичность Алтая // Геология и геофизика. – 1996. – Т. 37. – № 11. – С. 71–74. [Lukina NV. Active faults and seismicity in Altai. Russian Geology and Geophysics. 1996;37(11):68-71. (In Russ.)]
  20. Боярских И.Г., Сысо А.И., Мажейка Й. Изменение геофизических и почвенно-геохимических характеристик среды и метаболизм растений в локальной зоне активных сейсмотектонических проявлений Горного Алтая // IX международная биогеохимическая школа «Биогеохимия техногенеза и современные проблемы геохимической экологии»; август 24–28, 2015; Барнаул. С. 73–76. [Boyarskikh IG, Syso AI, Mazheika I. Izmenenie geofizicheskikh i pochvenno-geokhimicheskikh kharakteristik sredy i metabolizm rastenii v lokal›noi zone aktivnykh seismotektonicheskikh proyavlenii Gornogo Altaya (Conference proceedigs) IX mezhdunarodnaya biogeokhimicheskaya shkola “Biogeokhimiya tekhnogeneza i sovremennye problemy geokhimicheskoi ekologii”; 2015 August 24-28. Barnaul. P. 73-76. (In Russ.)]
  21. Куликова А.И., Боярских И.Г. Репродуктивная способность Lonicera caerulea (Caprifoliaceae) в локальной зоне геолого-геофизической неоднородности Горного Алтая // Сибирский экологический журнал. – 2015. – № 4. – С. 608–616. [Kulikova AI, Boyarskikh IG. Reproductive ability of Lonicera caerulea (Caprifoliaceae) in the local area of geological and geophysical heterogeneity in the Altai Mountains. Contemporary Problems of Ecology. 2015;8(4):503-511. (In Russ.)]. doi: 10.1134/S1995425515040101.
  22. Паушева З.П. Практикум по цитологии растений. – М.: Колос, 1980. [Pausheva ZP. Praktikum po citologii rastenij. Moscow: Kolos; 1980. (In Russ.)]
  23. Singh RJ. Plant Cytogenetics. 2nd ed. Boca Raton: CRC Press; 2003.
  24. Urry LA, Cain ML, Wasserman SA, et al. Campbell Bio logy in Focus. 14th ed. New York: Pearson Education; 2013.
  25. Машкина О.С., Калаев В.Н., Мурая Л.С., Леликова Е.С. Цитогенетические реакции семенного потомства сосны обыкновенной на комбинированное антропогенное воздействие в районе Новолипецкого металлургического комбината // Экологическая генетика. – 2009. – Т. 7. – № 3. – С. 17–29. [Mashkina OS, Kalaev VN, Muraya LS, Lelikova ES. Cytogenetic response of seed progeny of scots pine to combined anthropogenic pollution in the area of Novolipetsk metallurgical combine. Ecological Genetics. 2009;7(2):17-29. (In Russ.)]
  26. Glantz SA. Primer of Biostatistics. 7th ed. New York, NY: McGraw-Hill; 2012.
  27. Глотов Н.В., Животовский Л.А., Хованов Н.В., Хромов-Борисов Н.Н. Биометрия. – Л.: ЛГУ, 1982. [Glotov NV, Zhivotovsky LA, Khovanov NV, Khromov-Borisov NN. Biometrics. Leningrad: Leningrad State University; 1982. (In Russ.)]
  28. Буторина А.К., Калаев В.Н. Анализ чувствительности различных критериев цитогенетического мониторинга // Экология. – 2000. – № 3. – С. 206–210. [Butorina AK, Kalaev VN. Analysis of sensitivity of different criteria in cytogenetic monitoring. Russian Journal of Ecology. 2000;(31):186-189. (In Russ.)]. doi: 10.1007/BF02762819.
  29. Vostrikova TV, Butorina AK. Cytogenetic responses of birch to stress factors. Biology Bulletin. 2006;33(2):185-190. doi: 10.1134/S1062359006020142.
  30. Morgan DO. The Cell Cycle: Principles of Control. London: New Science Press; 2007.
  31. Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th ed. New York: Garland Science; 2002.
  32. Буторина А.К., Калаев В.Н., Миронов А.Н., и др. Цитогенетическая изменчивость в популяциях сосны обыкновенной // Экология. – 2001. – № 3. – С. 216–220. [Butorina AK, Kalaev VN, Mironov AN, et al. Cytogenetic variation in populations of Scotch pine. Russian Journal of Ecology. 2001;32:198-202. (In Russ.)]. doi: 10.1023/A:1011366328809.
  33. Kalaev VN, Butorina AK. Cytogenetic effect of radiation in seed of oak (Quercus robur L.) trees growing on sites contaminated by Chernobyl fallout. Silvae Genetica. 2006;55(3):93-101.
  34. Горячкина О.В., Сизых О.А. Цитогенетические реакции хвойных растений в антропогенно нарушенных районах г. Красноярска и его окрестностей // Хвойные бореальной зоны. – 2012. – Т. 30. – № 1–2. – С. 46–51. [Goryachkina OV, Sizykh OA. Tsitogeneticheskiye reaktsii khvoynykh rasteniy v antropogenno narushennykh rayonakh g. Krasnoyarska i yego okrestnostey. Khvoynyye boreal’noy zony. 2012;30(1-2):46-51. (In Russ.)]

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Location of the study area the Molnieboi Spur (a); Anomalous magnetic field within the study area (the normal magnetic field is 60,000 nT) (modified from Boyarskikh et al., 2012) (b). C, A–, A+, E and W — micropopulations in zones with contrast geophysical characteristics; 1 — the local fault zone

Download (449KB)
3. Fig. 2. Examples of abnormal mitoses in meristematic cells of seedlings: а – single chromosomes not included in the metaphase plate, b – rregular grouping of chromosomes in metaphase, с – lagging of chromosomes in anaphase, d – a bridge in anaphase, e – several groups of chromosomes in telophase, f – a broken bridge in telophase

Download (448KB)
4. Fig. 3. Proportions of abnormal mitoses in meristematic cells of seedlings depending on the fruit sampling location. The difference from the control is reliable, the χ2 criterion, * p < 0,05, ** p < 0,01. C, A–, A+, E and W — micropopulations in zones with contrast geophysical characteristics

Download (70KB)
5. Fig. 4. The range of abnormal mitoses in meristematic cells of seedlings depending on the fruit sampling location. Legend: lagging of chromosomes in prometaphase (1), irregular grouping of chromosomes in metaphase (2), lagging of chromosomes in anaphase (3), bridges in anaphase (4), chromosome ejections in anaphase (5), broken bridges in telophase (6), several groups of chromosomes in telophase (7)

Download (133KB)

Copyright (c) 2017 Boyarskikh I.G., Kulikova A.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies