Changes of the genetic structure in chronically irradiated scots pine populations

Cover Page

Cite item

Full Text

Abstract

Summary: Background. The vast forest areas were affected by radioactive fallout of the Chernobyl accident. Data about the long-term effects of chronic radiation exposure are insufficient, as well as knowledge about its influence on the genetic structure of populations. Study of isozyme polymorphism allows us to identify how chronic low-dose radiation exposure affects the genetic structure of plant populations and to develop new methods for assessing the biological effects of anthropogenic impact on terrestrial ecosystems.

Materials and methods. The study was conducted in six sites in the Bryansk region (4 radioactively contaminated and 2 reference ones). The method of vertical electrophoresis in PAAG was used for estimation of polymorphism of three enzymes involved in metabolic pathways. Activity of enzymes in seeds of Scots pine was assessed by spectrophotometry.

Results. The frequency of mutations in isozymes loci increased along the level of radiation exposure (7-130 mGy/year), as well as some characteristics of the genetic structure of populations. Biochemical activity of studied enzymes does not depend on the level of dose absorbed in the generative organs of pine.

Conclusions. It was found that the frequency of mutational events in loci of catabolic/anabolic enzymes and in the loci of previously studied antioxidant enzymes increases along the level of radiation exposure. The degree of the biological effect of chronic exposure was different in groups of catabolic/anabolic enzymes and antioxidant enzymes. Radiation exposure contributes to changes in the genetic structure of Scots pine populations.

About the authors

Elizaveta A Kazakova

Russian Institute of Radiology and Agroecology

Author for correspondence.
Email: alvaly@mail.ru

Junior Researcher, Laboratory of radiobiology and ecotoxicology plant

Russian Federation, Obninsk, Russia

Polina Yu Volkova

Russian Institute of Radiology and Agroecology

Email: volkova.obninsk@gmail.com

PhD, Leading Researcher, Laboratory of radiobiology and ecotoxicology plant

Russian Federation, Obninsk, Russia

Stanislav A Geras’kin

Russian Institute of Radiology and Agroecology

Email: stgeraskin@gmail.com

ScD, Professor, Head of laboratory, Laboratory of radiobiology and ecotoxicology plant

Russian Federation, Obninsk, Russia

References

  1. Козубов Г.М., Таскаев А.И. Радиобиологические исследования хвойных в районе чернобыльской катастрофы. – М.: ИПЦ «Дизайн. Информация. Картография», 2002. – 272 с. [Kozubov GM. Taskaev AI. Radiobiology investigations of conifers in region of the Chernobyl disaster. Moscow: PPC “Design. Information. Cartography”; 2002. (In Russ.)]
  2. Convention on biological diversity; 1992.
  3. Волкова П.Ю., Гераськин С.А. Полиморфизм антиоксидантных ферментов в хронически облучаемых популяциях сосны обыкновенной // Экологическая генетика. – 2013. – Т. 11. – № 3. – С. 44–58. [Volkova PY, Geraskin SA. Enzyme polymorphism of antioxidant system in chronically irradiated Scots pine populations. Ekologicheskaya genetika. 2013;11(3):44-58. (In Russ.)]. doi: 10.17816/ecogen11348-62.
  4. ICRP. Environmental protection — the concept and use of reference animals and plants. ICRP Publication 108. Ann ICRP. 2008;38(4-6).
  5. Sparrow AH, Woodwell GM. Prediction of the sensiti vity of plants to chronic gamma irradiation. Radiat Bot. 1962;2:9-26. doi: 10.1016/s0033-7560(62) 80091-x.
  6. Атлас современных и прогнозных аспектов последствий аварии на Чернобыльской АЭС на пострадавших территориях России и Беларуси (АСПА Россия — Беларусь) / Под ред. Ю.А. Израэля, И.М. Богдевича. – Москва; Минск: Фонд «Инфосфера» — НИА-При рода, 2009. – 140 с. [Izrael YuA, Bogdevich IM, editors. The Atlas of recent and predictable aspects of consequences of Chernobyl accident on polluted territories of Russia and Belarus (ARPA Russia — Belarus). Moscow; Minsk: “Infosphere” Foundation — NIA-Nature; 2009. (In Russ.)]
  7. Geras’kin SA, Oudalova AA, Dikareva NS, et al. Effects of radioactive contamination on Scots pines in the remote period after the Chernobyl accident. Ecotoxico logy. 2011;20:1195-208. doi: 10.1007/s10646-011-0664-7.
  8. Manchenko GP. Handbook of detection of enzymes on electrophoretic gels. Boka Raton (Florida): CRC Press; 1994.
  9. Биссвангер Х. Практическая энзимология. – М.: БИНОМ. Лаборатория знаний, 2010. [Bisswanger H. Practical enzymology. Moscow: BINOM. Laboratoriya znanii; 2010. (In Russ.)]
  10. Животовский Л.А. Популяционная биометрия. – М.: Наука, 1991. – 271 с. [Zhivotovsky LA. Population biometrics. Moscow: Nauka; 1991. (In Russ.)]
  11. Федоров И.С., Кальченко В.А., Игонина Е.В., Рубанович А.В. Радиационно-генетические последствия облучения популяций сосны обыкновенной в зоне аварии на ЧАЭС // Радиационная биология. Радиоэкология. – 2006. – Т. 46. – № 3. – С. 268–278. [Fedotov IS, Kal’chenko VA, Igonina EV, Rubanovich AV. Radiation and Genetic Consequences of Ionizing Irradiation on Population of Pinus sylvestris L. within the Zone of the Chernobyl NPP. Radiats Biol Radioecol. 2006;46(3):268-78. (In Russ.)]
  12. Хедрик Ф. Генетика популяций. – М.: Техносфера, 2003. – 592 с. [Hedrick PW. Genetics of Populations. Moscow: Tekhnosphera; 2003. 592 p. (In Russ.)]
  13. Wright S. The interpretation of population structure by F-statistics with special regard to system of mating. Evolution. 1965;19:395-420. doi: 10.2307/2406450.
  14. Nei M. Genetic distance between populations. Am Nat. 1972;106(949):283-92. doi: 10.1086/282771.
  15. Волкова П.Ю., Гераськин С.А., Раевская Н.И. Активность ферментов антиоксидантной системы у сосны обыкновенной в условиях хронического облучения // Радиационная биология. Радиоэкология. – 2014. – Т. 54. – № 2. – С. 174–178. [Volkova PYu, Geras’kin SA, Raevskaya NI. Antioxidant enzyme activities in Scots pine populations growing under chronic radiation exposure. Radiats Biol Radioecol. 2014;54(2):174-78. (In Russ.)]
  16. Казакова Е.А., Волкова П.Ю., Гераськин С.А., Помелова Д.О. Полиморфизм глюкозо-6-фосфатдегидрогеназы в хронически облучаемых популяциях сосны обыкновенной // Радиационная биология. Радиоэкология. – 2015. – Т. 55. – № 4. – С. 389–394. [Kaza kova EA, Volkova PYu, Geras’kin SA, Pomelova DO. Polymorphism of glucose-6-phosphate dehydrogenase in the chronically irradiated Scots pine populations. Radiats Biol Radioecol. 2015;55(4):389-94. (In Russ.)]. doi: 10.7868/S0869803115040049.
  17. Гераськин С.А., Фесенко С.В., Алексахин Р.М. Воздействие аварийного выброса Чернобыльской АЭС на биоту // Радиационная биология. Радиоэкология. – 2006. – Т. 46. – № 2. – С. 213–224. [Geras’kin SA, Fesenko SV, Alexakhin RM. The effects of non-human species irradiation after the ChNPP accident. Radiats Biol Radioecol. 2006;46(2):213-24. (In Russ.)]
  18. Алексахин Р.М., Булдаков Л.А., Губанов В.А., и др. Крупные радиационные аварии: Последствия и защитные меры. – М.: ИздАТ, 2001. – 752 с. [Alexakhin RM, Buldakov LA, Gubanov VA, Drozhko YeG, et al. Large radiation accidents: consequences and protective countermeasures. Moscow: IzdAT Publisher; 2004. (In Russ.)]
  19. Гераськин С.А., Ванина Ю.С., Дикарев В.Г., и др. Генетическая изменчивость в популяциях сосны обыкновенной из районов Брянской области, подвергшихся радиоактивному загрязнению в результате аварии на Чернобыльской АЭС // Радиационная биология. Радиоэкология. – 2009. – Т. 49. – № 2. – С. 136–146. [Geras’kin SA, Vanina JC, Dikarev VG, et al. Genetic variability in Scots pine populations from the Bryansk region radioactively contaminated as a result of the Chernobyl NPP Accident. Radiats Biol Radioecol. 2009;49(2):136-46. (In Russ.)]
  20. Юдина Р.С. Генетика и феногенетика малатдегидрогеназы растений // Вестник ВОГиС. – 2010. – Т. 14. – № 2. – С. 243–254. [Yudina RS. Genetics and phenogenetics of malate dehydrogenasein plants. Vestnik VOGiS. 2010. (In Russ.)]
  21. Matsui M, Fowler JH, Walling LL. Leucine aminopeptidases: diversity in structure and function. Biol Chem. 2006;387:1535-1544. doi: 10.1515/BC.2006.191.
  22. Сурсо М.В. Генетический полиморфизм и генетическая дифференциация северотаежных популяций сосны обыкновенной // Лесной вестник. – 2009. – Т. 67. – № 4. – С. 19–23. [Surso MV. Geneticheskii polimorfizm i geneticheskaya differentsiatsiya severotaezhnykh populyatsii sosny obyknovenno. Lesnoi vestnik. 2009;67(4):19-23. (In Russ.)]
  23. Hamrick JL, Linhart YB, Mitton JB. Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. Ann Rev Ecol Syst. 1979;10:173-200. doi: 10.1146/annurev.es.10.110179.001133.
  24. Pazouki L, Shanjani PS, Fields PD, et al. Large within-population genetic diversity of the widespread conifer Pinus sylvestris at its soil fertility limit characterized by nuclear and chloroplast microsatellite markers. Eur J Forest Res. 2016;135:161-77. doi: 10.1007/s10342-015-0928-5.
  25. Staszak J, Grulke NE, Marrett MJ, Prus-Glowacki W. Isozyme markers associated with O3 tolerance indicate shift in genetic structure of ponderosa and Jeffrey pine in Sequoia National Park, California. Environmental Pollution. 2007;149:366-75. doi: 10.1016/j.envpol.2007.05.026.
  26. Алтухов Ю.П. Генетические процессы в популяциях. – М.: Академкнига, 2003. – 431 с. [Altukhov YuP. Genetic processes in populations. Moscow: Akademkniga; 2003. 431 p. (In Russ.)]
  27. Коршиков И.И., Калафат Л.А. Сравнительное изучение аллозимного полиморфизма в группах деревьев сосны обыкновенной (Pinus sylvestris L.) с разной семенной продуктивностью // Цитология и генетика. – 2004. – № 2. – С. 9–14. [Korshikov II, Kalafat LA. Sravnitel’noe izuchenie allozimnogo polimorfizma v gruppakh derev’ev sosny obyknovennoi (Pinus sylvestris L.) s raznoi semennoi produktivnost’yu. Tsitologiya i genetika. 2004;(2):9-14. (In Russ.)]
  28. Гераськин С.А., Васильев Д.В., Кузьменков А.Г. Особенности формирования семян сосны обыкновенной в отдаленный период после аварии на Чернобыльской АЭС // Радиационная биология. Радиоэкология. – 2015. – Т. 55. – № 5. – С. 539–547. [Geras’kin SA, Vasiliev DV, Kuzmenkov AG. Specific Features of Scots Pine Seeds Formation in the Remote Period after the Chernobyl NPP Accident. Radiats Biol Radioecol. 2015;55(5):539-47. (In Russ.)]. doi: 10.7868/S0869803115050057.
  29. Geras’kin SA, Volkova PYu. Genetic diversity in Scots pine populations along a radiation exposure gradient. Sci Total Environ. 2014;496:317-27. doi: 10.1016/j.scitotenv.2014.07.020.
  30. Офицеров М.В., Игонина Е.В. Генетические последствия радиационного воздействия на популяцию сосны обыкновенной (Pinus sylvestris L.) // Генетика. – 2009. – Т. 45. – № 2. – С. 209–214. [Oficerov MV, Igonina EV. Genetic Consequences of Irradiation in a Scots Pine Pinus sylvestris L. Population. Rus J Genetics. 2009;45(2):183-8. (In Russ.)]
  31. Banks SC, Cary GJ, Smith AL, et al. How does ecological disturbance influence genetic diversity? Trends Ecol Evol. 2013;28:670-9. doi: 10.1016/j.tree.2013.08.005.
  32. Smith JT, Willey NJ, Hancock JT. Low dose ionizing radiation produces too few reactive oxygen species to directly affect antioxidant concentrations in cells. Biol Lett. 2012;8:594-7. doi: 10.1098/rsbl.2012.0150.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The location of experimental sites in the Bryansk region. The map from [6] with modifications

Download (271KB)
3. Fig. 2. The schematic designation of allozymes LAP, G6PD, MDH loci and the examples of zymograms of LAP (а), G6FD (b) and MDH (c)

Download (292KB)
4. Fig. 3. The frequencies of different types of mutations (a) and the total mutation rates (b) in the endosperms of Scots pine seeds among all loci of the G6FD, MDH and LAP enzymes

Download (210KB)
5. Fig. 4. The characteristics of genetic structure of the studied populations of Scots pine: the index of genotypic diversity (a), the proportion of rare alleles (b) and the effective numbers of alleles (c)

Download (180KB)
6. Fig. 5. The genetic differentiation of populations studied

Download (38KB)

Copyright (c) 2017 Kazakova E.A., Volkova P.Y., Geras’kin S.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies