Physiological mechanism epistatic interaction of resistance genes to acaricides of various chemical classes in the interline hybrids of two-spotted spider mite

Cover Page

Cite item

Full Text

Abstract

Summary: Background. The presence in interline hybrids two-spotted spider mite Tetranychus urticae Koch two genes determining resistance to acaricides of various chemical classes significantly increases their sensitivity to the action of each these toxicants.

Materials and methods. The resistant and susceptible to malathion, bifenthrin and abamectin inbred lines of spider mite by disruptive selection cycles were obtained. The toxicological tests were performed by diagnostic concentrations of acaricides. The protein marker gene of resistance to malathion was determined by poliacrylamide disc-electrophoresis.

Results. The epistatic interaction of resistance genes to different acaricides is not manifestation at the stages of transcription and translation of genetic information.

Conclusion. The epistatic effect of another gene on the resistance gene to the current acaricide is a different consequence of metabolism processes encoded by each gene at the stage of phenotypic regulation.

About the authors

Oleg V Sundukov

All-Russian Institute of Plant Protection

Author for correspondence.
Email: zubanov63@rambler.ru

PhD, Senior scientist, Laboratory ecotoxicology

Russian Federation, Pushkin, Saint Petersburg, Russia

Irina A Tulaeva

All-Russian Institute of Plant Protection

Email: zubanov63@rambler.ru

PhD, scientist, Laboratory ecotoxicology

Russian Federation, Pushkin, Saint Petersburg, Russia

Evgeniy A Zubanov

All-Russian Institute of Plant Protection

Email: zubanov63@rambler.ru

scientist, Laboratory ecotoxicology

Russian Federation, Pushkin, Saint Petersburg, Russia

References

  1. Беленький М.Л. Элементы количественной оценки фармакологического эффекта. – Рига: АН Латв. ССР, 1959. [Belenkiy ML. Elements of quantitative estimate of pharmacological action. Riga: AN Latv. SSR; 1959. (In Russ.)]
  2. Маурер Г. Диск-электрофорез. – М.: Мир, 1971. [Disk-Elektrophorese. Moskow: Mir, 1971. (In Russ.)]
  3. Сундуков О.В. Этиология острой токсичности инсектоакарицидов и физиологические факторы, определяющие избирательность их действия на членистоногих. – СПб.: Наука, 2012. [Aetiology of sharp toxic action and physiological factorsof selective insecticidal activity on arthropods. Saint Petersburg: Nauka; 2012. (In Russ.)]
  4. Сундуков О.В., Тулаева И.А., Зубанов Е.А. Наследование признаков резистентности к акарицидам в инбредных линиях обыкновенного паутинного клеща // Экол. генетика. – 2014. – Т. 12. – № 3. – С. 43–51. [Sundukov OV, Tulaeva IA, Zubanov YeA. Ecol Genetics. 2014;12(3):43-51. (In Russ.)]. doi: 10.17816/ecogen123.
  5. Сундуков О.В., Тулаева И.А., Зубанов Е.А. Проявление признаков резистентности к инсектоакарицидам в инбредных линиях обыкновенного паутинного клеща при дизруптивном отборе // Экол. генетика. – 2015. – Т. 13. – № 3. – С. 76–84. [Sundukov OV, Tulaeva IA, Zubanov YeA. Ecol. Genetics. 2015;13(3):76-84. (In Russ.)]. doi: 10.17816/ecogen123.
  6. Сундуков О.В., Тулаева И.А., Зубанов Е.А. Эпистатическое взаимодействие генов резистентности к акарицидам у межлинейных гибридов обыкновенного паутинного клеща // Экол. генетика. – 2016. – Т. 14. – № 1. – С. 27–33. [Sundukov OV, Tulaeva IA, Zubanov YeA. Ecol. Genetics. 2016;14(1):27-33. (In Russ.)]. doi: 10.17816/ecogen14127-33.
  7. Урбах В.Ю. Биометрические методы. – М.: Наука, 1964. [Urbah VYu. Biometrical methods. Moscow: Nauka; 1964. (In Russ.)]
  8. Antunes-Madeira MC, Madeira VMC. Interaction of insecticides with lipid membranes. Bichim Biophys Acta. Biomembranes. 1979;550:384-392. doi: 10.1016/0005-2736 (79)90143-3.
  9. Antunes-Madeira MC, Madeira VMC. Membrane partitioning of organophosphorus insecticides and its implications for mechanisms of toxicity. Pest Manag Sci. 1989;26:167-179. doi: 10.1002/ps.2780260208.
  10. Bass Ch, Field LM. Gene amplification and insecticide resistance. Pest Manag Sci. 2011;67(8):886-890. doi: 10.1002/ps.2189.
  11. Bloomquist JR. GABA and glutamate receptors as biochemical sites for insecticide action. In Ishaaya I. (ed.), Biochemical sites of insecticide action and resistance. New York: Springer; 2001. P. 17-41. doi: 10.1007/978-3-642-59549-3_2.
  12. Bloomquist JR. Chloride channels as tools for developing selective insecticides. Arch Insect Biochem Physiol. 2003;54(4):145-156. doi: 10.1002/arch.10112.
  13. Burton MJ, Mellor IR, Duce IR, et al. Differential resistance of insect sodium channels with kdr mutations to deltamethrin and DDT. Insect Biochem Mol Biol. 2011;41(9):723-732. doi: 10.1016/j.ibmb.2011.05.004.
  14. Dermauw W, Ilias A, Riga M, et al. The cys-loop ligand-gated ion channel gene family of Tetranychus urticae: Implications for acaricide toxicology and novel mutation associaned with abamectin resistance. Insect Biochem Mol Biol. 2012;42(7):455-65. doi.org/10.1016/j.ibmb.2012.03.002.
  15. Devonshire AL, Field LM. Gene amplification and insecticide resistance. Annu Rev Entomol. 1991;36:1-21. doi: 10.1146/annurev.en.36.010191.000245.
  16. Devorshak C, Roe RM. The role of esterases in insecticide resistance. Rev Toxicol. 1998;2:501-537.
  17. Field LM, Foster SPI. Amplified esterase genes and their relationship with insecticide resistance mechanisms in English field populations of the aphid, Myzus persicae (Sulzer). Pest Manag Sci. 2002;58:889-894. doi: 10.1002/ps.552.
  18. Karnovsky MJ, Roots L. A “direct-coloring” thiocholine method for cholinesterases. J Histochem Cytochem. 1964;12(3):219-221. doi: 10.1177/12.3.219.
  19. Kayser H, Lee C, Decock A, et al. Comparative analysis of neonicotinoid binding to insect membranes: A structure-activity study of the mode of [3H] imidacloprid displacement in Myzus persicae and Aphis craccivora. Pest Manag Sci. 2004;60(10):945-958. doi: 10.1002/ps.919.
  20. Kwon DH, Yoon KS, Clark JM, Lee SH. A point mutation in a glutamate-gated chloride channel confers abamectin resistance in the two-spotted spider mite, Tetranychus urticae Koch. Insect Mol Biol. 2010;19(4):583-91. doi: 10.1111/j.1365-2583.2010.01017.x.
  21. Leeuwen T van, Tirry L. Esterase-mediated bifenthrin resistance in a multiresistant strain of the two-spotted spider mite, Tetranychus urticae. Pest Manag Sci. 2007;63(4):150-156. doi: 10.1111/j.1365-2583.2010.01017.x.
  22. Leeuwen T van, Vontas J, Tsagkarakou A, et al. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: A review. Insect Biochem Mol Biol. 2010;40(8):563-72. doi: 10.1016/j.ibmb.2010.05.008.
  23. Li XC, Schuler MA, Berenbaum MR. Molecular mechanisms of metabolic resistance to synthetic and naturalxenobiotics. Annu Rev Entomol. 2007;52:231-253. doi: 10.1146/annurev.ento.51.110104.151104.
  24. Narahashi T. Neuronal ion channels as the target sites of insecticides. Pharmacol Toxicol. 1996;79:1-14. doi: 10.1111/j.1600-0773.1996.tb00234.x.
  25. Oakeshott JG, Claudianos C, Campbell PM, et al. Biochemical genetics and genomics of insect esterases. Compreh Molec Insect Sci. 2005;5:308-381. doi: 10.1016/BO-44-451924-6/00073-9.
  26. Smissaert HR. Esterases in spider mites hydrolyzing 1-naphtylacetate. Nature. 1965;205(4967):158-160. doi: 10.1038/205158a0.
  27. Soderlund DM. Pyrethroids, knockdown resistance and sodium channels. Pest Manag Sci. 2008;64(6):610-16. doi: 10.1002/ps.1574.
  28. Tsagkarakou A, Leeuwen T, Khajehali J, et al. Identificationof pyrethroid resistance associated mutations in the para sodium cyannel oft he two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae). Insect Mol Biol. 2009;18(5):583-93. doi: 10.1111/j.1365-2583.2009.00900.x.
  29. Wellmann H, Gomes M, Lee C, Kayser H. Comparative analysis of neonicotinoid binding to insect membranes: An unusual high affinity site for [3H] thiamethoxam in Myzus persicae and Aphis craccivora. Pest Manag Sci. 2004;60(10):959-970. doi: 10.10002/ps.920.
  30. Zhao X, Salgado VL. The role of GABA and glutamate receptors in susceptibility and resistance to chloride channel blocker insecticides. Pest Biochem Physiol. 2010;97(2):153-160. doi: 10.1016/j.pestbp.2009.10.002.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Identification of the allozyme E3 carboxylesterase in females homozygous for the gene of resistance to malathion: а – 1♀R-mal., b – 1♀S-mal., c – 1♀R-mal. (treatment); d – 20♀♀R-mal., e – 20♀♀S-mal., f – 20♀♀R-mal. Substrates for hydrolysis: 1 – naphthylacetate (a, b, c), s-bu tyrylthiocholine iodide (d, e), acetylthiocholine iodide (f)

Download (68KB)
3. Fig. 2. Identification of the allozyme Е3 carboxylesterase in females homozygous for the genes of resistance to bifenthrin and hybrid bifenthrin-malathion: а – 1♀R-bif., b – 1♀S-bif., c – 20♀♀R-bif., d – 20♀♀S-bif., e – 1♀R-bif.-mal., f – 20♀♀R-bif.-mal. Substrates for hydrolysis: 1 – naphthylacetate (a, b, e) and s-butyrylthiocholine iodide (c, d, f)

Download (74KB)
4. Fig. 3. Identification of the allozyme Е3 carboxylesterase in females homozygous for the genes of resistance to abamectin and hybrid abamectin-malathion: а – 1♀R-abam.; b – 1♀S-abam., c – 20♀♀R-abam., d – 20♀♀S-abam.; e – 1♀R-abam.-mal., f – 20♀♀R-abam.-mal. Substrates for hydrolysis: 1 – naphthylacetate (a, b, e) and s-butyrylthiocholine iodide (c, d, f)

Download (73KB)

Copyright (c) 2017 Sundukov O.V., Tulaeva I.A., Zubanov E.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies