Study of allele pool and genetic structure of russian population of lowland-caucasian line of European bison (Bison bonasus)

Cover Page

Cite item

Full Text

Abstract

Summary: Background. The European bison (Bison bonasus) is the only wild ox of Europe, survived to our days. Whilst numerous stu dies have been undertaken to characterize the Lowland line of European bison, it is little known about allele pool and population genetic structure of the Lowland-Caucasian line of wisent.

Materials and methods. The samples were collected from twenty-six animals of Russian breeding nucleus of Lowland-Caucasian line. Ten Bos Taurus microsatellites (TGLA227, BM2113, ETH10, SPS115, TGLA122, INRA23, TGLA126, BM1818, ETH225, and BM1824) were used for analysis.

Results. Eight of ten microsatellite loci (excluding TGLA227 and INRA23) were polymorphic. The number of alleles per locus is varied of one to five with average value of 2.80 ± 0.47. The alleles, which are specific for Lowland-Caucasian line, were identified. We observed relatively high inbreeding level (FIS = 0,091) and very low effective population size (Ne = 1.8, 95% CIs, Parametric 1.1-2.9). We showed that two genetically distinct groups have taken part in formation of allele pool of studied wisent population.

Conclusion. Our data indicated that the development of breeding program to decrease the inbreeding degree and to increase the level of genetic diversity is necessary.

About the authors

Arsen V Dotsev

L.K. Ernst Institute for Animal Husbandry

Author for correspondence.
Email: asnd@mail.ru

researcher, PhD, Department of animal breeding, selection and technologies

Russian Federation, Moscow region, Russia

Polina V Aksenova

Don State Technical University

Email: polinax-1@mail.ru

Dr. biol. sciences, Professor, Department of Biology and general pathology

Russian Federation, Rostov-on-Don, Russia

Valeriya V Volkova

L.K. Ernst Institute for Animal Husbandry

Email: moonlit_elf@mail.ru

researcher, PhD, Department of biotechnology and molecular diagnostics

Russian Federation, Moscow region, Russia

Veronika R Kharzinova

L.K. Ernst Institute for Animal Husbandry

Email: veronika0784@mail.ru

researcher, PhD, Department of biotechnology and molecular diagnostics

Russian Federation, Moscow region, Russia

Olga V Kostyunina

L.K. Ernst Institute for Animal Husbandry

Email: kostolan@mail.ru

researcher, PhD, Department of biotechnology and molecular diagnostics

Russian Federation, Moscow region, Russia

Roman A Mnatsekanov

WWF Russia

Email: ramnatsekanov@mail.ru

Senior Project Coordinator

Russian Federation, Krasnodar region, Russia

Natalia A Zinovieva

L.K. Ernst Institute for Animal Husbandry

Email: n_zinovieva@mail.ru

Head of department, Department of biotechnology and molecular diagnostics

Russian Federation, Moscow region, Russia

References

  1. Slatis MA. An analysis of inbreeding in the European bison. Genetics. 1960;45:275-287.
  2. Pucek Z, Bielousova IP, Krasiñska M, et al. European bison. Status survey and conservation action plan. IUCN/SSC Bison Specialist Group. IUCN, Gland, Switzerland and Cambridge, UK. 2004:54.
  3. Olech W. Analysis of inbreeding in European bison. Acta Theriologica. 1987;32:373-387. doi: 10.4098/AT.arch.87-25.
  4. Olech W. The inbreeding of European bison (Bison bonasus L.) population and its influence on viability. In: Book of Abstracts of the 49th Annual Meeting of the European Association for Animal Production, Warsaw, Poland, 1998. August 24-27. P. 26.
  5. Зубр. WWF. https://www.wwf.ru/about/what_we_do/species/zubr (cited 04.02.2017).
  6. Удина И.Г. Изучение ДНК-полиморфизма генов каппа казеина и главного комплекса гистосовместимости у зубров. Материалы 1-го съезда Вавиловского общества генетиков и селекционеров (ВОГиС) // Генетика. – 1994. – Т. 30. – Прил. – С. 161. [Udina IG. Study of DNA polymorphism of genes of kappa casein and main histocompatibility complex in wisent. Genetika. 1994;30(Suppl.):161. (In Russ.)]
  7. Wójcik JM, Kawałko A, Tokarska M, et al. Post-bottleneck mtDNA diversity in a free-living population of European bison: implications for conservation. J Zoo logy. 2009;277(1):81-87. doi: 10.1111/j.1469-7998.2008.00515.x.
  8. Putman AI, Carbone I. Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecol Evol. 2014;4(22):4399-4428. doi: 10.1002/ece3.1305.
  9. Dieringer D, Schlötterer C. Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species. Genome Research. 2003;13:2242-2251. doi: 10.1101/gr.1416703.
  10. Chen MH, Dorn S. Cross-amplification of microsatellites from the codling moth Cydia pomonella to three other species of the tribe Grapholitini (Lepidoptera: Tortrici dae). Molecular Ecology Resource. 2010;10(6):1034-37. doi: 10.1111/j.1755-0998.2010.02837.x.
  11. Kim KS, Min MS, An JH, et al. Cross-species amplification of Bovidae microsatellites and low diversity of the endangered Korean goral. J Hered. 2004;95(6):521-5. doi: 10.1093/jhered/esh082.
  12. Nguyen TT, Genini S, Ménétrey F, et al. Application of bovine microsatellite markers for genetic diversity analysis of Swiss yak (Poephagus grunniens). Animal Genetics. 2005;36(6):484-489. doi: 10.1111/j.1365-2052.2005.01357.x.
  13. Nguyen TT, Genini S, Bui LC, et al. Genomic conservation of cattle microsatellite loci in wild gaur (Bos gaurus) and current genetic status of this species in Vietnam. BMC Genet. 2007;6(8):77. doi: 10.1186/1471-2156-8-77.
  14. Аль-Кейси Т.В., Зиновьева Н.А., Гладырь Е.А., и др. Оценка интродукции генофонда исходных видов у гибридов Bos Taurus и Phoephagus grunniens Монголии с использованием микросателлитов // Проблемы биологии продуктивных животных. – 2011. – № 1. – С. 6–8. [Al’-Keysi TV, Zinovieva NA, Gladyr EA, et al. Evaluation of introduction of gene pool of initial species in Bos Taurus and Phoephagus grunniens hybrids. Problemy biologii produktivnykh zhivotnykh. 2011;(1):6-8. (In Russ.)]
  15. Roth T, Pfeiffer I, Weising K, et al. Application of bovine microsatellite markers for genetic diversity analysis of European bison (Bison bonasus). J Anim Breed Genet. 2006;123(6):406-409. doi: 10.1111/j.1439-0388.2006.00613.x.
  16. Tokarska M, Marshall T, Kowalczyk R, et al. Effectiveness of microsatellite and SNP markers for parentage and identity analysis in species with low genetic diversity: the case of European bison. Heredity. 2009;103(4):326-32. doi: 10.1038/hdy.2009.73.
  17. Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics. 2012;28:2537-9. doi: 10.1111/j.1471-8286.2005. 01155.x.
  18. Keenan K, McGinnity P, Cross TF, et al. diveRsity: An R package for the estimation of population genetics parameters and their associated errors. Me thods in Ecology and Evolution. 2013;4(8):782-788. doi: 10.1111/2041-210X.12067.
  19. Do C, Waples RS, Peel D, et al. NeEstimator v2: re‐implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Res. 2014;14(1):209-214. doi: 10.1111/1755-0998.12157.
  20. Waples RS, Do C. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl. 2010;3(3):244-262. doi: 10.1111/j.1752-4571.2009.00104.x.
  21. Jombart T. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24(11):1403-1405. doi: 10.1093/bioinformatics/btn129.
  22. Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2009.
  23. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945-959. Доступно по: http://web.stanford.edu/group/pritchardlab/structure_software/release_versions/v2.3.4/html/structure.html. Ссылка активна на 01.09.2016.
  24. Gralak B, Krasiñska M, Niemczewski C, et al. Polymorphism of bovine microsatellite DNA sequences in the lowland European bison. Acta Theriologica. 2004;49:449-456. doi: 10.1007/BF03192589.
  25. Михайлова М.Е., Медведева Ю.В. Сравнение аллельных частот микросателлитных локусов белорусской и польской популяций европейского зубра (Bison bonasus) // Весцi Нацыянальнай акадэмii навук Беларусi. Серыя бiялагiчных навук. – 2013. – № 2. – С. 47–52. [Mikhaylova ME, Medvedeva YuV. Comparison of allele frequencies of microsatellite loci in Belorussian and Polish population of European bison (Bison bonasus). Vestsi Natsyyanal’nay akademii navuk Belarusi. Seryya biyalagichnykh navuk. 2013;2:47-52. (In Russ.)]

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Genotypic variability in 26 individuals of the Russian wisent population, genotyped by ten STR markers, based on principal component analysis (PCA): the X axis is the principal component 1 (PC1), the Y axis is the principal component 2 (PC2); investigated groups of wisent: PTZ – Prioksko-Terrasny, KCH – Karachaevo-Cherkessky, OKZ – Oksky

Download (23KB)
3. Fig. 2. Population affiliation of 26 wisent individuals based on the analysis of 10 STR-markers estimated by STRUCTURE software: Investigated groups of wisent: PTZ – Prioksko-Terrasny, KCH – Karachaevo-Cherkessky, OKZ – Oksky; X axis – individuals (presented as thin vertical bars with fractions of different shades of gray, reflecting their alleged origin from different populations); Y axis – coefficient of membership Q

Download (48KB)
4. Table 1. Comparative analysis of microsatellite DNA polymorphisms in Bison bonasus of Lowland-Caucasian and Lowland lines
Download (299KB)
5. Table 2. The main population genetic parameters for studied groups of wisent (Bison bonasus), based on 10 STR markers
Download (245KB)

Copyright (c) 2017 Dotsev A.V., Aksenova P.V., Volkova V.V., Kharzinova V.R., Kostyunina O.V., Mnatsekanov R.A., Zinovieva N.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».