Low level of genetic differentiation among populations of the rare species Allium regelianum A.K. Becker ex Iljin from the Volgograd region detected by ISSR-analysis

Cover Page

Cite item

Full Text

Abstract

Background. Knowledge of genetic diversity within and among populations of rare and endangered plants species is practically important for conservation management. Molecular markers are useful tools for analysis of genetic diversity. In this study ISSR-analysis of rare endemic species Allium regelianum which grows in the Volgograd region was performed for the first time.

Materials and Methods. A total of 93 samples from the 11 populations were collected and used in analysis. Six primers used in ISSR-analysis. Data analysis was performed using the GenAlEx 6.41, POPGEN 1.32, PAST 3.11 and STRUCTURE 2.3.1 programs.

Results. A total of 109 ISSR-fragments were scored of which 87 (79.8%) were polymorphic. Comparatively high level of intrapopulation diversity was estimated for the population of the area near Krasnoyarskii khutor, Serafimovichskii administrative region, and for the population of Khrenovatyi Liman, Nikolaevskii administrative region of Volgograd Oblast. Genetic similarity index among populations ranged from 0.88 to 0.96. Genetic differentiation among populations of A. regelianum, GST was 0.284, only. Analysis of molecular variance showed that genetic heterogeneity of A. regelianum 83% was attributed to differences within populations and 17% occurred among populations. Principal coordinate analysis and analysis of populations structure (with the used of STRUCTURE program) found no clear differentiation among populations.

Conclusion. The estimation of intra- and interpopulation diversity of A. regelianum was performed. ISSRs detected high levels of genetic similarity within the populations of A. regelianum and low level of genetic differentiation among populations.

About the authors

Aya A Trifonova

Vavilov Institute of General Genetics, Russian Academy of Sciences

Author for correspondence.
Email: aichka89@mail.ru

Postgraduate student, Laboratory of Plant Genetics

Russian Federation, Moscow, Russia

Elena Z Kochieva

Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences

Email: ekochieva@yandex.ru

Dr. Biol. Sci., Researcher, Laboratory of Plant System Biology

Russian Federation, Moscow, Russia

Alexander M Kudryavtsev

Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: kudryav@vigg.ru

Dr. Biol. Sci, Acting Director, Laboratory of Plant Genetics

Russian Federation, Moscow, Russia

References

  1. Haig SM. Molecular contributions to conservation. Ecology. 1998;79(2):413-425.
  2. Frankham R. Genetics and conservation biology. C. R. Biologies. 2003;(326):22-29. doi: 10.1016/S1631-0691(03)00023-4.
  3. Soule ME, Simberloff D. What do genetics and ecology tell us about the design of nature reserves? Biological Conservation. 1986;35(1):9-40.
  4. Francisco-Ortega J, Santos-Guerra A, Kim SС, Crawford DJ. Plant genetic diversity in the Canary Islands: a conservation perspective. American Journal of Botany. 2000;87(7):909-919.
  5. Rottenberg A, Parker JS. Conservation of the critically endangered Rumex rothschildianus as implied from AFLP diversity. Biological Conservation. 2003;(114):299-303. doi: 10.1016/S0006-3207(03)00049-1.
  6. Красная книга Российской Федерации (Растения и грибы). – М.: Министерство природных ресурсов и экологии РФ и Росприроднадзор, 2008. – С. 46–47. [The Red Book of the Russian Federation (Plants and Fungi). Moscow: Ministerstvo Prirodnykh Resursov i Ekologii Rossiiskoi Federatsii, Rosprirodnadzor; 2008. P. 46-47. (In Russ.)]
  7. Агеев С.Е., Коротков О.И., Гребенников К.А., и др. Опыт изучения и сохранения вида Allium regelianum A. Becker Волгоградским региональным ботаническим садом на территории Волгоградской области // Вестник удмуртского университета. – 2012. – № 3. – С. 34–40. [Ageeva SE, Korotkov OI, Grebennikov KA, et al. The experience of studying and preserving the species Allium regelianum A. Becker has regional Botanical Garden in the territory of the Volgograd region. The Bulletin of Udmurt University Biology & Earth Sciences. 2012;(3):34-40. (In Russ.)]
  8. Bian F, Pang Y, Wang Z, et al. Genetic diversity of the rare plant Anemone shikokiana (Makino) Makino (Ranunculaceae) inferred from AFLP markers. Plant Systematics and Evolution. 2015;301(2):677-684. doi: 10.1007/s00606-014-1105-x.
  9. Walisch TJ, Colling G, Bodenseh M, Matthies D. Divergent selection along climatic gradients in a rare central European endemic species, Saxifraga sponhemica. Annals of Botany. 2015;115(7):1177-1190. doi: 10.1093/aob/mcv040.
  10. Szczecińska M, Sramko G, Wolosz K, Sawicki J. Genetic diversity and population structure of the rare and endangered plant species Pulsatilla patens (L.) Mill in East Central Europe. PloS One. 2016;11(3): e0151730. doi: 10.1371/journal.pone.0151730.
  11. Трифонова А.А., Кочиева Е.З., Кудрявцев А.М. Анализ вариабельности микросателлитных локусов у редкого эндемичного вида Allium regelianum A.K. Becker ex Iljin // Генетика. – 2017. – Т. 53. –№ 2. –С.192–200. [Trifonova AA, Kochieva EZ, Kudryavtsev AM. Analysis of microsatellite loci variability in rare and endemic species Allium regelianum A.K. Becker ex Iljin. Russian Journal of Genetics. 2017;53(2):213-220. (In Russ.)] doi: 10.1134/S1022795417010124.
  12. Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics. 1994;20(2):176-183.
  13. Liu J, Shi S, Chang E, et al. Genetic diversity of the critically endangered Thuja sutchuenensis revealed by ISSR markers and the implications for conservation. International Journal of Molecular Sciences. 2013;14(7):14860-14871. doi: 10.3390/ijms140714860.
  14. Bentley L, Barker NP, Dold AP. Genetic diversity of the endangered Faucaria tigrina (Aizoaceae) through ISSR “fingerprinting” using automated fragment detection. Biochemical Systematics and Ecology. 2015;(58):156-161. doi: 10.1016/j.bse.2014.11.012.
  15. Crema S, Cristofolini G, Rossi M, Conte L. High genetic diversity detected in the endemic Primula apennina Widmer (Primulaceae) using ISSR fingerprinting. Plant Systematics and Evolution. 2009;280(1):29-36. doi: 10.1007/s00606-009-0167-7.
  16. Doyle J. DNA Protocols for Plants. Molecular Techniques in Taxonomy NATO ASI Series. 1991;(57):283-93.
  17. Samiei L, Kiani M, Zarghami H, et al. Genetic diversity and interspecific relationships of some Allium species using inter simple sequence repeat markers. Bangladesh Journal of Plant Taxonomy. 2015;22(2):67-75. doi: 10.3329/bjpt.v22i2.26029.
  18. Son JH, Park KC, Lee SI, et al. Species relationships among Allium species by ISSR analysis. Horticulture, Environment, and Biotechnology. 2012;53(3):256-62. doi: 10.1007/s13580-012-0130-3.
  19. Mukherjee A, Sikdar B, Ghosh B, et al. RAPD and ISSR analysis of some economically important species, varieties, and cultivars of the genus Allium (Alliaceae). Turkish Journal of Botany. 2013;(37):605-618. doi: 10.3906/bot-1208-18.
  20. Peakall R, Smouse PE. GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics. 2012;28(19):2537-9. doi: 10.1093/bioinformatics/bts460.
  21. Yeh FC, Young RC, Mao J, et al. POPGENE, the Microsoft Windows-based user-friendly software for population genetic analysis of co-dominant and dominant markers and quantitative traits. Edmonton: Alta; 1999.
  22. Hammer O, Harper DAT, Ryan PD PAST: Paleontological Statistics software package for education and data analysis. Paleontologia Electronica. 2001;4(1):1-9.
  23. Nei M. Genetic distance between populations. The American Naturalist. 1972;106(949):283-292.
  24. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945-959.
  25. Ebrahimi R, Zamani Z, Kashi A. Genetic diversity evaluation of wild Persian shallot (Allium hirtifolium Boiss.) using morphological and RAPD markers. Scientia Horticulturae. 2009;(119):345-351. doi: 10.1016/j.scienta.2008.08.032.
  26. Huang D, Li Q, Zhou C, et al. Intraspecific differentiation of Allium wallichii (Amaryllidaceae) inferred from chloroplast DNA and internal transcribed spacer fragments. Journal of Systematics and Evolution. 2014;52(3):341-354. doi: 10.1111/jse.12050.
  27. Mashayekhi S, Columbus TJ. Genetic diversity of Allium munzii (Amaryllidaceae), a rare southern California species and implication for its conservation. Biochemical Systematics and Ecology. 2015;(59):91-99. doi: 10.1016/j.bse.2014.12.025.
  28. Smith JF, Pham VT. Genetic diversity of the narrow endemic Allium aaseae (Alliaceae). American Journal of Botany. 1996;83(6):717-726. doi: 10.2307/2445848.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Sampling locations of A. regelianum. Numbers of sampling locations corresponds to the numbers in Table 1

Download (366KB)
3. Fig. 2. ISSR profiles of accessions of A. regelianum with primer UBC841

Download (629KB)
4. Fig. 3. Differentiation of 93 individuals of A. regelianum based on principal coordinates analysis. Populations symbols: + – Bykovskii administrative region, liman Tazhi (No 1-6); o – Nikolaevskii administrative region, liman Khrenovatyi (No 7-26); n – Nikolaevskii administrative region, liman Medvezhii (No 27-31); × – Nikolaevskii administrative region, liman Bogatyrev (No 32-42); l – Ilovlinskii administrative region, khutor Eretskii (No 43); ¡ – Frolovskii administrative region, khutor Vyezdinskii (No 44-45); ◊ – Serafimovichskii administrative region, khutor Druzhilinskii (No 46-48); * – Serafimovichskii administrative region, khutor Krasnoyarskii (No 49-78); – Serafimovichskii administrative region, khutor Buerak-Popovskii (No 79-84); — Serafimovichskii administrative region, khutor Novoaleksandrovskii (No 85-88); Δ – Alekseevskii administrative region, stanitsa Ust’-Buzulukskaya (No 89-93)

Download (135KB)
5. Fig. 4. Probability of assignment of A. regelianum to groups identified by hierarchical STRUCTURE analysis, with the number of subpopulations к = 2. Vertical axis – the proportion of allele frequencies of the corresponding cluster; the horizontal axis – the analyzed samples (numbers of samples corresponds to the numbers in Table 1)

Download (14KB)

Copyright (c) 2017 Trifonova A.A., Kochieva E.Z., Kudryavtsev A.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies