Productivity and stress-tolerance of transgenic tobacco plants with constitutive expression of rapeseed glutathione synthetase gene BnGSH

Cover Page

Cite item

Full Text

Abstract

Summary: Glutathione is the most important part of plant antioxidant defense system. Biosynthesis of glutathione in the cells is performed by two enzymes: glutamylcysteine ligase and glutathione synthetase, the latter catalyzing the attachment of glycine to a dipeptide glutamylcysteine. In literature there is information on the improvement of heavy metal-tolerance of transgenic plants due to the increase in the expression level of glutathione synthetase genes. However there is not enough data on the tolerance of these plants to other types of abiotic stress. Therefore the aim of our research was to make transgenic tobacco plants with constitutive expression of rapeseed glutathione synthetase gene BnGSH and to estimate their growth parameters in normal conditions and under salt, drough and cold stress. Using agrobacterial transformation method, we generated 17 lines of transgenic plants containing rapeseed BnGSH gene under control of 35S promoter. The presence of transgenes was confirmed by PCR method and histochemical analysis of the activity of GUS reporter gene. 12 lines with the highest expression of BnGSH gene were chosen on the basis of the results of RT-PCR. We performed morphological analysis, including measurements of stem hight, leaf area, flower length, fresh and dry weight of shoots and root length. Some transgenic plants demonstrated increased productivity in normal conditions as well as under NaCl stress. However, no change in drought and cold tolerance was observed in transgenic plants.

About the authors

Bulat R Kuluev

Institute of Biochemistry and Genetics, Ufa Sci. Center of RAS

Author for correspondence.
Email: Kuluev@bk.ru

Senior Researcher. Laboratory of molecular biology and nanobiotechnology

Russian Federation, Ufa, Russia

Zoya A Berezhneva

Institute of Biochemistry and Genetics, Ufa Sci. Center of RAS

Email: berezhneva-z@yandex.ru

Postgraduate. Laboratory of molecular biology and nanobiotechnology

Russian Federation, Ufa, Russia

Elena V Mikhaylova

Institute of Biochemistry and Genetics, Ufa Sci. Center of RAS

Email: mikhele@list.ru

Senior laboratory assistant. Laboratory of molecular biology and nanobiotechnology

Russian Federation, Ufa, Russia

Bogdan N Postrigan

Institute of Biochemistry and Genetics, Ufa Sci. Center of RAS

Email: postrigan@bk.ru

Researcher. Laboratory of molecular biology and nanobiotechnology

Russian Federation, Ufa, Russia

Aleksey V Knyazev

Institute of Biochemistry and Genetics, Ufa Sci. Center of RAS

Email: knyazev@anrb.ru

Senior Researcher. Laboratory of molecular biology and nanobiotechnology

Russian Federation, Ufa, Russia

References

  1. Wise RR, Naylor AW. Chilling-enhanced photooxidation: evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiol. 1987;83(2):278-282. doi: 10.1104/pp.83.2.278.
  2. Загоскина Н.В., Назаренко Л.В. Активные формы кислорода и антиоксидантная система растений // Вестник Московского городского педагогического университета. Серия «Естественные науки». – 2016. – № 22. – С. 9–23. [Zagoskina NV, Nazarenko LV. Active Oxygen Species and Antioxidant System of Plants. Vestnik Moscow city university: Natural Sciences. 2016;(22):9-23 (In Russ.)]
  3. Колупаев Ю.Е. Антиоксиданты растительной клетки, их роль в АФК-сигналинге и устойчивости растений // Успехи современной биологии. – 2016. – Т. 136. – С. 181–198. [Kolupaev YuE. Plant Cell Antioxidants and Their Role in ROS Signaling and Plant Resistance. Uspehi sovremennoj biologii. 2016;136:181-198 (In Russ.)]
  4. Noctor G, Mhamdi A, Chaouch S, et al. Glutatione in plants: an integrated overview. Plant Cell Environ. 2012;35:454-484. doi: 10.1111/j.1365-3040.2011.02400.x.
  5. Pivato M, Fabrega-Prats M, Masi A. Low-molecular-weight thiols in plants: Functional and analytical implications. Arc Biochem Biophys. 2014;560:83-99. doi: 10.1016/j.abb.2014.07.018.
  6. Pilon-Smits E. Phytoremediation. Annu Rev Plant Biol. 2005;56:15-39. doi: 10.1146/annurev.arplant.56. 032604.144214.
  7. Marrs K. The functions and regulation of glutathione-S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol. 1996;47:127-158. doi: 10.1146/annurev.arplant.47.1.127.
  8. Flocco CG, Lindblom SD, Smits EA. Overexpression of enzymes involved in glutathione synthesis enhances tolerance to organic pollutants in Brassica juncea. Int J Phytoremediation. 2004;6:289-304. doi: 10.1080/16226510490888811.
  9. Foyer CH, Souriau N, Perret S, et al. Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol. 1995;109:1047-1057. doi: 10.1104/pp.109.3.1047.
  10. Liedschulte V, Wachter A, Zhigang A, Rausch T. Exploiting plants for glutathione (GSH) production: Uncoupling GSH synthesis from cellular controls results in unprecedented GSH accumulation. Plant Biotechnology Journal. 2010;8:807-820. doi: 10.1111/j.1467-7652.2010.00510.x.
  11. Guo J, Dai X, Xu W, Ma M. Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere. 2008;72:1020-1026. doi: 10.1016/j.chemosphere.2008.04.018.
  12. Zhu YL, Pilon-Smits EAH, Jouanin L, Terry N. Overexpression of glutathione synthetase in Indian mustard enhances Cadmium accumulation and tolerance. Plant Physiol. 1999;119:73-80. doi: 10.1104/pp.119.1.73.
  13. Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. 2010;48: 909-930. doi: 10.1016/j.plaphy.2010.08.016.
  14. Кулуев Б.Р., Князев А.В., Лебедев Я.П., и др. Получение трансгенных растений табака, экспрессирующих консервативные участки гена AINTEGUMENTA в антисмысловой ориентации // Физиология растений. – 2012. – № 3. – С. 341–353. [Kuluev BR, Knyazev AV, Lebedev YaP, et al. Obtaining transgenic tobacco plants expressing conserved regions of the AINTEGUMENTA gene in antisense orientation. Russian Journal of Plant Physiology. 2012;59:307-317. (In Russ.)]. doi: 10.1134/S1021443712030107.
  15. Кулуев Б.Р., Князев А.В., Чемерис А.В., Вахитов В.А. Морфологические особенности трансгенных растений табака, экспрессирующих ген AINTEGUMENTA рапса под контролем промотора вируса мозаики георгина // Онтогенез. – 2013. – Т. 44. – № 2. – С. 110–114. [Kuluev BR, Knyazev AV, Chemeris AV, Vakhitov VA. Morphological features of transgenic tobacco plants expressing the AINTEGUMENTA gene of rape under control of the dahlia mosaic virus promoter. Russian Journal of Developmental Biology. 2013;44:86-89. (In Russ.)]. doi: 10.1134/S1062360413020070.
  16. Choi JY, Seo YS, Kim SJ, et al. Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglucosylase/hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants (Solanum lycopersicum cv. Dotaerang). Plant Cell Rep. 2011;30: 867-877. doi: 10.1007/s00299-010-0989-3.
  17. Cheng MC, Ko K, Chang WL, et al. Increased glutathione contributes to stress tolerance and global translational changes in Arabidopsis. Plant J. 2015;83:926-939. doi: 10.1111/tpj.12940.
  18. Vijayakumar H, Thamilarasan SK, Shanmugam A, et al. Glutathione transferases superfamily: cold-inducible expression of distinct GST genes in Brassica oleracea. Int J Mol Sci. 2016;17(8). doi: 10.3390/ijms17081211.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Morphometric parameters of transgenic tobacco plants overexpressing the BnGSH gene under normal growth conditions: a – stem height; b – leaf area; c – fresh weight of shoot; d – dry weight of shoot; ДТ – wild type, 1–14 – lines of transgenic plants. n = 5. * p < 0,01

Download (167KB)
3. Fig. 2. Morphometric parameters of transgenic tobacco plants overexpressing the BnGSH gene under NaCl salinity: a – stem height; b – fresh weight of shoot; c – dry weight of shoot; d – root growth in length when grown under normal conditions; e – root growth in length when grown under action of 50 мМ NaCl; f – root growth in length when grown under action of 100 мМ NaCl. ДТ – wild type, 1–14 – lines of transgenic plants. n = 5. * p < 0,01. In the histograms a-c with a light-gray column indicate morphometric parameters under normal conditions and a dark gray column – morphometric parameters under the action of NaCl

Download (251KB)
4. Fig. 3. Morphometric parameters of transgenic tobacco plants overexpressing the BnGSH gene under low positive temperatures and drought: a – fresh weight of shoot under action of +12 °C; b – dry weight of shoot under action of +12 °C; c – root growth in length when grown under action of +12 °C; d – fresh weight of shoot under action of drought; e – dry weight of shoot under action of drought; f – relative water content (RWC). ДТ – wild type, 1-14 – lines of transgenic plants. n = 5. * p < 0,01

Download (241KB)

Copyright (c) 2017 Kuluev B.R., Berezhneva Z.A., Mikhaylova E.V., Postrigan B.N., Knyazev A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies