Combination of rice blast resistance genes in the genotypes of russian rice varieties with the use of marker assisted selection

Cover Page

Cite item

Full Text

Abstract

Grain productivity of rice is significantly reduced by dangerous disease – blast. Therefore, the development of resistant high yielding rice varieties with the Pi group of genes is important. Use of molecular markers linked with the loci of resistance significantly optimizes the breeding process.

The purpose of the research is to develop rice lines combining 2-6 loci of resistance to blast: Pi-1, Pi-2, Pi-33, Pi-ta, Pi-b, Pi-40 by molecular marking.

Materials and Methods. As donors of resistance genes foreign samples were used, recipient – Russian varieties. In the studies we used micro-satellites markers and PCR analysis.

Results. In the first stage of the research as a result of hybridization domestic lines with genes Pi-l, Pi-2, Pi-33 were obtained. At the second stage – hybrids with all 3 genes were developed. In the third stage genes Pi-b and Pi-ta and on the fourth – Pi-40 were introduced.

Conclusion. As a result, rice genotypes, combining 6 loci of blast resistance were developed with use of marker assisted selection.

About the authors

Pavel I. Kostylev

Agrarian Scientific Center “Donskoy”

Author for correspondence.
Email: p-kostylev@mail.ru
ORCID iD: 0000-0002-4371-6848
SPIN-code: 7901-1531

doctor of agricultural sciences, head, laboratory of breeding and seed production of rice

Russian Federation, 3, Nauchny Gorodok, Zernograd, Rostov region, 347740

Elena V. Krasnova

Agrarian Scientific Center “Donskoy”

Email: krasnovaelena67@mail.ru

candidate of agricultural sciences, leading researcher, laboratory of breeding and seed production of rice

Russian Federation, 3, Nauchny Gorodok, Zernograd, Rostov region, 347740

Aleksandr A. Redkin

Agrarian Scientific Center “Donskoy”

Email: Rs.07.Pro@mail.ru

candidate of agricultural sciences, researcher, laboratory of breeding and seed production of rice

Russian Federation, 3, Nauchny Gorodok, Zernograd, Rostov region, 347740

Elena V. Dubina

All-Russian Research Institute of Rice

Email: lenakrug1@rambler.ru

cand. of Biol. Sci., head of the laboratory

Russian Federation, 3, Belozerny, Krasnodar, 35092

Zhanna M. Mukhina

All-Russian Research Institute of Rice

Email: agroplazma@gmail.com

doctor of biological sciences, Deputy Director on innovation

Russian Federation, 3, Belozerny, Krasnodar, 35092

References

  1. Костылев П.И., Редькин А.А., Краснова Е.В., и др. Создание устойчивых к пирикуляриозу сортов риса с помощью ДНК-маркеров // Вестник российской сельскохозяйственной науки. – 2014. – № 1. – С. 26–28. [Kostylev PI, Redkin AA, Krasnova EV, et al. Creating rice varieties, resistant to pirikulariosis by means of DNA markers. Vestnik rossijskoj selskohozyajstvennoj nauki. 2014;(1):26-28. (In Russ.)]
  2. Sharma TR, Rai AK, Gupta SK, et al. Rice blast management through host-plant resistance: Retrospect and prospects. Agricultural Research. 2012;1(1):37-52. doi: 10.1007/s40003-011-0003-5.
  3. Костылев П.И., Шилов И.А., Мухина Ж.М. Перенос пяти генов устойчивости риса к пирикуляриозу с помощью ДНК-маркеров // Вестник российской сельскохозяйственной науки. – 2014. – № 2. – С. 33–34. [Kostylev PI, Shilov IA, Mukhina ZhM. Transferring five genes of rice resistance to piriculariose by means of DNA-markers. Vestnik rossijskoj selskohozyajstvennoj nauki. 2014;(2):33-34. (In Russ.)]
  4. Flor HH. Current status of the gene-for-gene concept. Annu Rev Phytopathol. 1971;9:275-296.
  5. Silue D, Notteghem JL, Tharreau D. Evidence for a gene-for-gene relationship in the Oryza sativa – Magnaporthe grisea pathosystem. Phytopathology. 1992;82:577-580. doi: 10.1094/phyto-82-577.
  6. Mackill DJ, Bonman JM. Inheritance of blast resistance in near-isogenic lines of rice. Phytopathology. 1992;82:746-749. doi: 10.1094/phyto-82-746.
  7. Koide Y, Kobayashi N, Xu D, et al. Blast resistance genes and their selection markers in rice (Oryza sativa L.). JIRCAS Working Report. 2009;63:95-122.
  8. Harushima Y, Yano M, Shomura A, et al. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics. 1998;148:479-494.
  9. Bryan GT, Wu K, Farrall L, et al. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell. 2000;12:2033-2045. doi: 10.1105/tpc.12.11.2033.
  10. Wu JL, Fan YY, Li DB, et al. Genetic control of rice blast resistance in the durably resistant cultivar Gumei 2 against multiple isolates. Theoretical and Applied Genetics. 2005;111:50-56. doi: 10.1007/s00122-005-1971-2.
  11. Qu S, Liu G, Zhou B, et al. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics. 2006;172:1901-1914. doi: 10.1534/genetics.105.044891.
  12. Zhou B, Qu S, Liu G, et al. The eight aminoacid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Molecular Plant-Microbe Interactions. 2006;19:1216-1228. doi: 10.1094/MPMI-19-1216.
  13. Jena KK, Moon HP, Mackill DJ. Marker assisted selection – a new paradigm in plant breeding. Korean J Breed. 2003;35:133-140.
  14. Correa-Victoria FJ, Tharreau D, Martinez C, et al. Studies on the rice blast pathogen, resistance genes, and implication for breeding for durable blast resistance in Colombia. Rice Blast: Interaction with Rice and Control. 2004. P. 215-227. doi: 10.1007/978-0-306-48582-4_26.
  15. Chen XW, Li SG, Ma YQ, et al. Marker-assisted selection and pyramiding for three blast resistance genes, Pi-d(t)1, Pi-b, Pi-ta2, in rice. Chinese Journal of Biotechnology. 2004;20(5):708-714.
  16. Hua LX, Lianga LQ, Hed XY, et al. Development of a marker specific for the rice blast resistance gene Pi39 in the Chinese cultivar Q15 and its use in genetic improvement. Biotechnology & Biotechnological Equipment. 2015;29(3):448-456. doi: 10.1080/13102818.2015.1011894.
  17. Chen HQ, Chen ZX, Ni S, et al. Pyramiding three genes with resistance to blast by marker assisted selection to improve rice blast resistance of Jin 23B. Chinese Journal of Rice Science. 2008;22(1):23-27.
  18. Divya B, Biswas A, Robin S, et al. Gene interactions and genetics of blast resistance and yield attributes in rice (Oryza sativa L.). J Genet. 2014;93(2):415-424. doi: 10.1007/s12041-014-0395-7.
  19. Wang ZX, Yano M, Yamanouchi U, et al. The Pi-b gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. The Plant Journal. 1999;19:55-64. doi: 10.1046/j.1365-313x.1999.00498.x.
  20. Yokoo M, Kikushi F, Fujimaki H, et al. Breeding of blast resistance lines (BL1 to 7) from indica-japonica crosses of rice. Japan J Breed. 1978;28:359-385. doi: 10.1270/jsbbs1951.28.359.
  21. Tsunoda Y, Jwa NS, Akiyama K, et al. Cloning of the rice blast resistance gene Pi-b. Developments in Plant Pathology. 2000;1:9-16. doi: 10.1007/978-94-015-9430-1_2.
  22. Коломиец Т.М. Отбор исходного материала риса для селекции на иммунитет к пирикуляриозу: автореф. дис. … канд. биол. наук. – Голицино,1990. – 21 с. [Kolomiec TM. Otbor iskhodnogo materiala risa dlya selekcii na immunitet k pirikulyariozu [dissertation]. Golicino; 1990. 21 p. (In Russ.)]
  23. Супрун И.И., Ильницкая Е.Т., Мухина Ж.М. Создание внутригенного ДНК-маркера гена устойчивости к пирикуляриозу риса Pi-b и его использование в практической селекции // Сельскохозяйственная биология. – 2007. – № 5. – С. 63–66. [Suprun II, Ilnitskaya ET, Mukhina ZhM. Development of intragene DNA-marker for rice blast resistance gene Pi-b and its using in practical breeding. Selskohozyajstvennaya biologiya. 2007;(5):63-66. (In Russ.)]
  24. Супрун И.И., Шиловский В.Н., Рубан В.Я. Селекционные и молекулярно-генетические методы в создании устойчивых к пирикуляриозу линий риса // Вестник российской сельскохозяйственной науки. – 2012. – № 1. – С. 60–62. [Suprun II, Shilovsky VN, Ruban VYa. Breeding and molecular-genetic methods in creating piriculariose-resistant lines in rice. Vestnik rossijskoj selskohozyajstvennoj nauki. 2012;(1):60-62. (In Russ.)]
  25. Keen NT. The molecular biology of disease resistance. Plant Molec Biol. 1992;19:109-122. doi: 10.1007/978-94-011-2656-4_7.
  26. Suh JP, Roh JH, Cho YC, et al. The Pi40 gene for durable resistance to rice blast and molecular analysis of Pi40-advanced backcross breeding lines. Phytopathology. 2009;99(3):243-250. doi: 10.1094/PHYTO-99-3-0243.
  27. Jeung JU, Kim BR, Cho YC, et al. A novel gene, Pi-40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. Theoretical and Applied Genetics. 2007;115:1163-77. doi: 10.1007/s00122-007-0642-x.
  28. Хавкин Э.Е. Молекулярная селекция растений: ДНК-технологии создания новых сортов сельскохозяйственных культур // Сельскохозяйственная биология. – 2003. – № 3. – С. 26–41. [Khavkin EE. Plant molecular breeding: DNA technologies of creating new crop varieties. Selskohozyajstvennaya biologiya. 2003;(3):26-41. (In Russ.)]
  29. Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Thompson Nucleic Acids Research. 1980;10:4321-4325. PMC324241.
  30. Stress and disease tolerance. In: http://www.knowledgebank.irri.org/ricebreedingcourse 10.12.2016.
  31. Костылев П.И., Краснова Е.В., Редькин А.А., и др. Объединение в одном генотипе риса пяти генов устойчивости к пирикуляриозу с помощью ДНК-маркеров // 8-я Междунар. научно-практ. конф. «Биологическая защита растений — основа стабилизации агроэкосистем». – Краснодар, 2014. – С. 25–28. [Kostylev PI, Krasnova EV, Redkin AA, et al. Combined in one rice genotype five blast resistance genes with DNA markers. 8 Mezhdunar. nauchno-prakt. konf. “Biologicheskaya zashhita rastenij – osnova stabilizacii agroekosistem”. (conference proceedings) Krasnodar; 2014. P. 25-28. (In Russ.)]
  32. Костылев П.И., Краснова Е.В., Редькин А.А., и др. Пентаген — новый сорт риса с пятью генами устойчивости к пирикуляриозу, созданный с помощью маркерной селекции // Фундаментальные и прикладные исследования в биоорганическом сельском хозяйстве России, СНГ и ЕС. Междунар. научно-практ. конф. (9–12 августа 2016 г.). Мат. докл., сообщ. – М., 2016. – Т. 2. – С. 113–121. [Kostylev PI, Krasnova EV, Redkin AA, et al. Pentagen – new rice of rice with five genes of resistance to blast, created by marker assisted selection. Fundamentalnye i prikladnye issledovaniya v bioorganicheskom selskom hozyajstve Rossii, SNG i ES. Mezhdunar. nauchno-prakt. konf. 9-12.08.2016 (conference proceedings). Moscow; 2016;2:113-121. (In Russ.)]

Supplementary files

Supplementary Files
Action
1. JATS XML
2. table1eng
Download (81KB)
3. table2eng
Download (151KB)
4. Fig. 1. The panicle of hybrid F1 C101-Lас (Pi-1+33) × Boyarin

Download (85KB)
5. Fig. 2. Results of the separation by electrophoresis of the amplification products of DNA plants F2 (C101-Lac × Boyarin) with the RM224 marker to the rice blast resistance gene Pi-1. Note: 39-56 – analyzed plants; B – recipient variety Boyarin; line C101-Lac – donor of gene Pi-1

Download (91KB)
6. Fig. 3. Results of the separation by electrophoresis of the amplification products of DNA plants F2 (C101- A-51 × Boyarin) with the RM527 marker to the rice blast resistance gene Pi-2. Note: 65-110 – analyzed plants; B – recipient variety Boyarin; line C101 A-51 – donor of gene Pi-2

Download (86KB)
7. Fig. 4. Results of the separation by electrophoresis of the amplification products of DNA plants F2 (C101-Lac × Boyarin) with the RM310 marker to the rice blast resistance gene Pi-33. Note: 56-73 – analyzed plants; B – recipient variety Boyarin; line C101-Lac – donor of gene Pi-33

Download (88KB)
8. Fig. 5. Electrophoregrams for dividing the products of DNA amplification of rice plants with RM224, RM527, RM310, IGM Pi-b, IGM Pi-ta to five genes Pi-1, Pi-2, Pi-33, Pi-b, Pi-ta, respectively. Lines 1225/13 and 1396/13 (numbers of samples 2 and 19) have dominant al-leles in the homozygous state in five loci, variety Boyarin (B) – recessive. In the presence of the genes Pi-1, Pi-2, Pi-33, Pi-b, Pi-ta fragments of 158, 233, 85, 302, 132 bp, respectively, are amplified

Download (184KB)

Copyright (c) 2017 Kostylev P.I., Krasnova E.V., Redkin A.A., Dubina E.V., Mukhina Z.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies