Functional analysis of cT-DNAs in naturally transformed plants, recent findings and general considerations

Cover Page

Cite item

Full Text

Abstract

Several cases have been reported of naturally transformed plant species. These plants contain cellular T-DNAs (cT-DNAs) derived from ancient infections by Agrobacterium. We have determined the structure of 4 different cT-DNAs in N. tomentosiformis, the paternal ancestor of N. tabacum, and found several intact open reading frames. Among these, TB-mas2’ and TA-rolC were tested for activity. TB-mas2’ encodes desoxyfructosylglutamine (DFG) synthesis. Some N. tabacum cultivars show very high TB-mas2’ expression and produce DFG in their roots. The TA-rolC gene is biologically active and when expressed under strong constitutive promoter control, generates growth changes in N. tabacum. Based on these first data on the structure and function of cT-DNAs I present a theoretical model on the origin and evolution of naturally transformed plants, which may serve as a basis for further research in this field.

About the authors

Léon Otten

Institut de Biologie Moléculaire des Plantes

Author for correspondence.
Email: leon.otten@ibmp-cnrs.unistra.fr
Russian Federation

References

  1. Otten L, De Ruffray R. Agrobacterium vitis nopaline Ti plasmid pTiAB4: relationship to other Ti plasmids and T-DNA structure. Mol Gen Genet. 1994;245:493-505. doi: 10.1007/BF00302262.
  2. Vladimirov IA, Matveeva TV, Lutova LA. Opine biosynthesis and catabolism genes of Agrobacterium tumefaciens and Agrobacterium rhizogenes. Russ J Genet. 2015;51:121-129. doi: 10.1134/S1022795415020167.
  3. Spena A, Schmülling T, Koncz C, Schell JS. Independent and synergistic activity of rol A, B and C loci in stimulating abnormal growth in plants. EMBO J. 1987;6:3891-3899.
  4. Nilsson O, Olsson O. Getting to the root: the role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant. 1997;100, 463-473. doi: 10.1111/j.1399-3054.1997.tb03050.x.
  5. Schell J, Van Montagu M, De Beuckeleer M, et al. Interactions and DNA Transfer between Agrobacterium tumefaciens, the Ti-Plasmid and the Plant Host. P Roy Soc Lond B Bio. 1979;204:251-266. doi: 10.1098/rspb.1979.0026.
  6. White F, Garfinkel D, Huffman GA, et al. Sequences homologous to Agrobacterium rhizogenes T-DNA in the genomes of uninfected plants. Nature. 1983;301:348-350. doi: 10.1038/301348a0.
  7. Furner IJ, Huffman GA, Amasino RM, et al. An Agrobacterium transformation in the evolution of the genus Nicotiana Nature. doi: 10.1038/319422a0.
  8. Suzuki K, Yamashita I, Tanaka N. Tobacco plants were transformed by Agrobacterium rhizogenes infection during their evolution. Plant J. 2002;32:775-787. doi: 10.1046/j.1365-313X.2002.01468.x.
  9. Matveeva TV, Bogomaz DI, Pavlova OA, et al. Horizontal gene transfer from genus Agrobacterium to the plant Linaria in nature. MPMI. doi: 10.1094/MPMI-07-12-0169-R.
  10. Matveeva TV, Lutova LA. Horizontal gene transfer from Agrobacterium to plants. Front Plant Sci. 2014;11(5):326. doi: 10.3389/fpls.2014.00326.
  11. Chen K, Dorlhac de Borne F, Szegedi E, Otten L. Deep sequencing of the ancestral tobacco species Nicotiana tomentosiformis reveals multiple T-DNA inserts and a complex evolutionary history of natural transformation in the genus. Nicotiana Plant J. 2014;80:669-682. doi: 10.1111/tpj.12661.
  12. Kyndt T, Quispe D, Zhai H, et al. The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. Proc Nat Acad Sci USA. 2015;112:5844-5849. doi: 10.1073/pnas.1419685112.
  13. Meyer A, Tempé J, Costantino P. Hairy root: a molecular overview. Functional analysis of Agrobacterium rhizogenes T-DNA genes. In Plant-Microbe Interactions, Vol. 5 (G. Stace, Keen N.T., eds). St. Paul, Minnesota: APS Press; 2000:93-139.
  14. Chen K, Dorlhac de Borne F, Julio E, et al. Root-specific expression of opine genes and opine accumulation in some cultivars of the naturally occurring GMO Nicotiana tabacum. Plant J. 2016; in press.
  15. Levesque H, Delepelaire P, Rouzé P, et al. Common evolutionary origin of the central portion of the Ri TL-DNA of Agrobacterium rhizogenes and the Ti T-DNAs of Agrobacterium tumefaciens. Plant Mol Biol. 1988;11:731-744. doi: 10.1007/BF00019514.
  16. Aoki S, Syono K. Function of Ngrol genes in the evolution of Nicotiana glauca conservation of the function of NgORF13 and NgORF14 after ancient infection by an Agrobacterium rhizogenes-like ancestor. Plant Cell Physiol. 1999;40:222-230. doi: 10.1093/oxfordjournals.pcp.a029531.
  17. Fründt C, Meyer AD, Ichikawa T, Meins F. A tobacco homologue of the Ri-plasmid orf13 gene causes cell proliferation in carrot root disks. Mol Gen Genet. 1998;259:559-68. doi: 10.1007/s004380050849.
  18. Mohajjel-Shoja H, Clément B, Perot J, et al. Biological activity of the Agrobacterium rhizogenes-derived rolC gene of Nicotiana tabacum and its functional relationship to other plast genes. MPMI. 2011;24:44-53. doi: 10.1094/MPMI-06-10-0139.
  19. Darwin C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, London, John Murray. 1859.
  20. Baek CH, Farrand SK, Park DK, et al. Genes for utilization of deoxyfructosyl glutamine (DFG), an amadori compound, are widely dispersed in the family Rhizobiaceae. FEMS Microbiol Ecol. 2005;53:221-233. doi: 10.1016/j.femsec.2004.12.008.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Different hypothetical stages in the origin and further evolution of natural GMOs. On the left: possible ways to study the hypothetical events. The plant forms are symbolical and intend to show changes in morphology and physiology at the different steps. HR: hairy root

Download (50KB)

Copyright (c) 2016 Otten L.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies