Use of morphoj soft package for phenotypic and genotypic variety testing (English oak case study)

Cover Page

Cite item

Full Text

Abstract

Summary: Background. Some special characters in asymmetry of shape were studied in leaf plate English oak. Materials and methods. In 6 random populations generalized Procrustes analysis showed the mix of fluctuating asymmetry (FA) and directional asymmetry (DA). Results. One population showed pure FA. Covariance symmetric matrix reveals more variance in comparison to matrix asymmetry showed variation bilaterally symmetrical landmarks. Correlation analysis of covariance symmetric matrix and matrix asymmetry containing the coordinates of landmarks after the permutation showed a weak positive correlation coefficient (0.25, p < 0.01). Conclusion. The coefficients of variation of the factors “side”and “side × population” among 6 populations were respectively 48.24% and 44.93% that evidenced on equal variance of both types of asymmetry or slightly increased directional asymmetry. It is noted that the cluster analysis the matrix asymmetry can be used to search genotypic variability.

About the authors

Sergey G Baranov

Vladimir State University (VlSU)

Author for correspondence.
Email: bar.serg58@gmail.com
docent, Department of Biological and Geographical Education Russian Federation

References

  1. Большаков В.Н., Васильев А.Г., Васильева И.А., и др. Сопряженная биотопическая изменчивость ценопопуляций симпатрических видов грызунов на Южном Урале // Экология. – 2015. – № 4. – С. 265–271. [Bol’shakov VN, Vasil’ev AG, Vasil’eva IA, et al. Coupled biotopic variation in populations of sympatric rodent species in the Southern Urals. Russ J of Ecol. 2015;46(4): N.p., Print. (In Russ.)]
  2. Васильев А.Г., Васильева И.А. Феногенетический мониторинг импактных популяций растений и животных в условиях антропогенного пресса // Научные ведомости БелГУ. – Серия «Естественные науки». – 2009. – Т. 8. URL: http://cyberleninka.ru/article/n/fenogeneticheskiy-monitoring-impaktnyh-populyatsiy-rasteniy-i-zhivotnyh-v-usloviyah-antropogennogo-pressa (дата обращения 24.02.2016). [Vasil’ev AG, Vasil’eva IA. Fenogeneticheskii monitoring impaktnykh populyatsii rastenii i zhivotnykh v usloviyakh antropogennogo pressa. Nauchnye vedomosti BelGU. Seriya: Estestvennye nauki. 2009;8. (In Russ.)]
  3. Васильев А.Г., Васильева И.А., Большаков В.Н. Эволюционно-экологический анализ закономерностей феногенетической изменчивости гомологичных морфоструктур: от популяций до экологических рядов видов // Экология. – 2010. – Т. 5. – С. 1–8. [Vasilyev AG, Vasilyeva IA, Bol’shakov VN. Evolutionary-Ecological analysis of trends in phenogenetic variation of homologous morphological structures: from populations to ecological series of species. Russ J Ecol. 2010;41(5):365-371. Web. 23 May 2016. (In Russ.)]
  4. Войта Л.Л., Омелько В.Е., Петрова Е.А. Анализ морфометрической изменчивости и внутривидовой структуры крошечной бурозубки Sorex minutissimus Zimmermann, 1780 (lipotyphla: soricidae) на территории России // Труды Зоологического института РАН. – 2013. – Т. 317. – Вып. 3. – С. 332–351. [Voita LL, Omelko VE, Petroava EA. Analysis of the morphometrics variability and intraspecific structure of Sorex Minutissimus Zimmermann, 1780 (Lipotyphla: Soricidae) in Russia. Acta Theriol. 2013;8:167-179:11-13. (In Russ.)]. doi: 10.4098/at.arch.64-10.
  5. Захаров В.М., Чубинишвили А.Т. Мониторинг здоровья среды на охраняемых природных территориях. – М.: Центр экологической политики России, 2001. – 148 с. [Zakharov VM, Chubinishvilli AT. Monitoring zdorov’ya sredy na okhranyaemykh prirodnykh territoriyakh. Moscow: Tsentr ekologicheskoi politiki Rossii; 2001. 148 p. (In Russ.)]
  6. Луговская Л.А., Межова Л.А. Биоиндикация геоэкологических условий с использованием дуба черешчатого (Quercus robur L.) для мониторинга среды // Проблемы региональной экологии. – № 2. – 2012. – С. 65–68. [Lugovskaja LA, Mezhova LA. Bioindikacija geojekologicheskih uslovij s ispol’zovaniem duba chereshchatogo (Quercus robur L.) dlja monitoringa sredy. Problemy regional’noj jekologii. 2012(2):65-68. (In Russ.)]
  7. Павлинов И.Я., Микешина Н.Г. Принципы и методы геометрической морфометрии // Журнал общей биологии. – 2002. – Т. 63. – № 6. – С. 473–493. [Pavlinov LYa, Mikeshina NG. Principles and methods of geometric morphometrics. Russian Journal of Ecology. 2002;63(6):473-493. (In Russ.)]
  8. Струнников В.А., Вышинский И.М. Реализационная изменчивость у тyтoвoгo шелкопряда // Проблемы генетики и теории эволюции. – Новосибирск: Наука, 1991. – С. 99–114. [Strunnikov VA, Vyshinskij IM. Realizacionnaja izmenchivost’ u tytovogo shelkoprjada. Problemy genetiki i teorii jevoljucii. Novosibirsk: Nauka; 1991. P. 99-114. (In Russ.)]
  9. Тиходеев О.Н. Классификация изменчивости по факторам, определяющим фенотип: традиционные взгляды и их современная ревизия // Экол. генетика. – 2013. – Т. 11. – Вып. 3. – С. 79–92. [Tihodeev ON. Klassifikacija izmenchivosti po faktoram, opredeljajushhim fenotip: tradicionnye vzgljady i ih sovremennaja revizija. Jekol. genetika. 2013;11(3):79-92 (In Russ.)]
  10. Baranov SG, Zykov IE, Fedorova LV. Developmental stability study of Quercus Robur: industrial and abiotic factors influence. Adv Environ Biol. 2014;8(17):102-109.
  11. Baranov SG. Use of morphogeometric method for study fluctuating asymmetry in leaves Tilia cordata under industrial pollution. Adv Environ Biol. 2014;8(7):2391-2398.
  12. Costa M, Mateus R, Moura M. Constant fluctuating asymmetry but not directional asymmetry along the geographic distribution of Drosophila antonietae (Diptera, Drosophilidae). Revista Brasileira de Entomologia. 2015;59:337-342. doi.org/10.1016/j.rbe.2015.09.004.
  13. Fair JM, Breshears DD. Drought stress and fluctuating asymmetry in Quercus undulata leaves: confounding effects of absolute and relative amounts of stress? J Arid Environ. 2005;62(2):235-249.
  14. Fei Xu, Weihua Guo, Weihong Xu And Renqing Wang. Habitat effects on leaf morphological plasticity in Quercus acutissima. Acta Biologica Cracoviensia Series Botanica. 2008;50(2):19-26.
  15. Graham John H, Whitesell Mattie J, Fleming Mark II, et al. Fluctuating asymmetry of plant leaves: batch processing with LAMINA and continuous symmetry measures. Symmetry. 2015;7:255-268. doi: 10.3390/sym7010255.
  16. Hodar Jose A. Leaf fluctuating asymmetry of Holm oak in response to drought under contrasting climatic conditions. J Arid Environ. 2002;52:233-243.
  17. Klingenberg CP, Duttke S, Whelan S, Kim M. Developmental plasticity, morphological variation and evolvability: a multilevel analysis of morphometric integration in the shape of compound leaves. J Evol Biol. 2012;25:115-129.
  18. Klingenberg CP. Analyzing fluctuating asymmetry with geometric morphometrics: concepts, methods, and applications. Symmetry. 2015;7843-934. doi: 10.3390/sym7020843.
  19. Klingenberg CP. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Res. 2011;11:353-357. doi: 10.1111/j.1755-0998.2010.02924.x.
  20. Klingenberg СР, Barluenga M, Meyer A. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evol. 2002;56:1909-1920. doi: 10.1554/0014-3820.
  21. Nuche P, Komac B, Camarer JJ, et al. Developmental instability as an index of adaptation to drought stress in a Mediterranean oak. Ecol Indic. 2014;40 May: 68-75.
  22. Oksanen L. The devil lies in details: reply to Stuart Hurlbert. Oikos. 2004;104:598-605.
  23. Palmer AR, Strobeck C. Fluctuating asymmetry as a measure of developmental stability: Implications of non-normal distributions and power of statistical tests. Acta Zool Fennica. 191:57-72 Helsinki 30 June 1992.
  24. Parsons PA. Fluctuating asymmetry: an epigenetic measure of stress. Biol Rev. 1990;65(2):131-145.
  25. Raj A, Van Oudenaarden A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell. 2008;135:216-226.
  26. Rohlf FJ. Shape statistics: procrustes superimpositions and tangent spaces. J Classif. 1999;16:197-223.
  27. Stige LC, David B, Alibert P. On hidden heterogeneity in directional asymmetry – can systematic bias be avoided? J Evol Biol. 2006;19:492-499. doi: 10.1111/j.1420-9101.2005.01011.x.
  28. Van Valen L. A study of fluctuating asymmetry. Evol. 1962;16(2):125-142.
  29. Viscosi V, Cardini A. Leaf morphology, taxonomy and geometric morphometrics: a simplified protocol for beginners. PLoSONE. 2011;6(10):25630. doi: 10.1371/journal.pone.0025630.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 2. a) 10 pair of landmarks for testing FA; the landmarks represented on a Procrustes fit in symmetric matrix (b) and in matrix of asymmetry (c). Black dots show the landmarks after aliment by superimposition. Symmetric matrix possesses more variance due to variety in lobes and sinuses. Matrix of asymmetry reflects variation of landmarks in left and right sides

Download (250KB)
3. Fig. 3. Joint classification tree Procrustes distance of six population groups. On the axis of ordinate — Euclidean distance

Download (37KB)

Copyright (c) 2016 Baranov S.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies