Роль генов, связанных с окислительным стрессом, в синдроме поликистозных яичников: понимание генетической предрасположенности и патогенеза
- Авторы: Ломтева С.В.1,2
-
Учреждения:
- Южный федеральный университет
- Центр репродукции человека и ЭКО
- Выпуск: Том 23, № 3 (2025)
- Страницы: 303-310
- Раздел: Экологическая генетика человека
- URL: https://journals.rcsi.science/ecolgenet/article/view/361854
- DOI: https://doi.org/10.17816/ecogen679724
- EDN: https://elibrary.ru/SYZMEO
- ID: 361854
Цитировать
Аннотация
Окислительный стресс — важный фактор развития и прогрессирования синдрома поликистозных яичников. Он приводит к метаболическим нарушениям, системному воспалению и дисфункции яичников. Избыточная продукция активных форм кислорода в сочетании со снижением антиоксидантной защиты усугубляет инсулинорезистентность, гиперандрогению и приводит к нарушению фолликулогенеза. Генетические варианты генов антиоксидантов дополнительно влияют на этот дисбаланс, формируя индивидуальную предрасположенность к синдрому. В данном обзоре обобщена роль ключевых генов антиоксидантной защиты, включая SOD2, GPX1, GPX4, CAT и PON1, рассмотрена их ассоциация с риском развития синдрома поликистозных яичников и клиническими исходами. Такой полиморфизм, как rs4880 гена SOD2 и rs713041 гена GPX4, демонстрирует относительно устойчивую ассоциацию с синдромом поликистозных яичников, в то время как другие варианты указывают на популяционно-специфические эффекты. Интеграция генетического тестирования, клинических маркеров и данных об образе жизни может способствовать разработке протоколов прецизионной терапии синдрома поликистозных яичников, что в конечном итоге улучшит фертильность, метаболическое здоровье и качество жизни у женщин с этим заболеванием. Разработка протоколов прецизионной терапии данного синдрома с учетом данных генетического тестирования и образа жизни поможет улучшить репродуктивное и метаболическое здоровье женщин с поликистозом яичников.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Светлана Витальевна Ломтева
Южный федеральный университет; Центр репродукции человека и ЭКО
Автор, ответственный за переписку.
Email: embryolab61@gmail.com
ORCID iD: 0000-0002-8791-1936
SPIN-код: 8678-2770
канд. биол. наук
Россия, 344006, Ростов-на-Дону, ул. Большая Садовая, д. 105/42; Ростов-на-ДонуСписок литературы
- Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2005;3:28. doi: 10.1186/1477-7827-3-28
- Li W, Liu C, Yang Q, et al. Oxidative stress and antioxidant imbalance in ovulation disorder in patients with polycystic ovary syndrome. Front Nutr. 2022;9:1018674. doi: 10.3389/fnut.2022.1018674
- Ershova OA, Bairova TA, Kolesnikov SI, et al. Oxidative stress and catalase gene. Bulletin Experimental Biology and Medicine. 2016;161(3):400–403. doi: 10.1007/S10517-016-3424-0
- Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015;30(1):11–26. doi: 10.1007/s12291-014-0446-0
- Bannigida DM, Nayak BS, Vijayaraghavan R. Insulin resistance and oxidative marker in women with PCOS. Arch Physiol Biochem. 2020;126(2):183–186. doi: 10.1080/13813455.2018.1499120
- Herman R, Jensterle M, Janež A, et al. Genetic variability in antioxidative and inflammatory pathways modifies the risk for PCOS and influences metabolic profile of the syndrome. Metabolites. 2020;10(11):439. doi: 10.3390/METABO10110439
- Murri M, Luque-ramírez M, Insenser M, et al. Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and meta-analysis. Hum Reprod Update. 2013;19(3):268–288. doi: 10.1093/HUMUPD/DMS059
- Terao H, Wada-Hiraike O, Nagumo A, et al. Role of oxidative stress in follicular fluid on embryos of patients undergoing assisted reproductive technology treatment. J Obstet Gynaecol Res. 2019;45(9):1884–1891. doi: 10.1111/JOG.14040
- Liu Y, Yu Z, Zhao S, et al. Oxidative stress markers in the follicular fluid of patients with polycystic ovary syndrome correlate with a decrease in embryo quality. J Assist Reprod Genet. 2021;38(2):471–477. doi: 10.1007/S10815-020-02014-Y
- Bizoń A, Tchórz A, Madej P, et al. The activity of superoxide dismutase, its relationship with the concentration of zinc and copper and the prevalence of rs2070424 superoxide dismutase gene in women with polycystic ovary syndrome-preliminary study. J Clin Med. 2022;11(9):2548. doi: 10.3390/JCM11092548
- Singh AK, Chattopadhyay R, Chakravarty B, Chaudhury K. Markers of oxidative stress in follicular fluid of women with endometriosis and tubal infertility undergoing IVF. Reprod Toxicol. 2013;42:116–24. doi: 10.1016/J.REPROTOX.2013.08.005
- Uçkan K, Demir H, Turan K, et al. Role of oxidative stress in obese and nonobese PCOS patients. Int J Clin Pract. 2022;2022:4579831. doi: 10.1155/2022/4579831
- Rudnicka E, Duszewska AM, Kucharski M, et al. Оxidative stress and reproductive function: Oxidative stress in polycystic ovary syndrome. Reproduction. 2022;164(6):F145–F154. doi: 10.1530/REP-22-0152
- Duleba AJ, Dokras A. Is PCOS an inflammatory process? Fertil Steril. 2012;97(1):7–12. doi: 10.1016/J.FERTNSTERT.2011.11.023
- Polat S, Şimşek Y. Five variants of the superoxide dismutase genes in Turkish women with polycystic ovary syndrome. Free Radic Res. 2020;54(6):467–476. doi: 10.1080/10715762.2020.1802022
- Sun Y, Li S, Liu H, et al. Association of GPx1 P198L and CAT C-262T genetic variations with polycystic ovary syndrome in Chinese women. Front Endocrinol (Lausanne). 2019;10:771. doi: 10.3389/FENDO.2019.00771
- Yu N, Wu L, Xing X. NOX4 deficiency improves the impaired viability, inhibited the apoptosis and suppressed autophagy of DHEA-treated ovarian granulosa cells through inhibiting endoplasmic reticulum stress via inactivating PERK/ATF4 pathway. Tissue Cell. 2025;92:102640. doi: 10.1016/j.tice.2024.102640
- Wang Y, Li N, Zeng Z, et al. Humanin regulates oxidative stress in the ovaries of polycystic ovary syndrome patients via the Keap1/Nrf2 pathway. Mol Hum Reprod. 2021;27(2):gaaa081. doi: 10.1093/MOLEHR/GAAA081
- Duică F, Dănilă CA, Boboc AE, et al. Impact of increased oxidative stress on cardiovascular diseases in women with polycystic ovary syndrome. Front Endocrinol (Lausanne). 2021;12:614679. doi: 10.3389/fendo.2021.614679
- Sulaiman MAH, Al-Farsi YM, Al-Khaduri MM, et al. Polycystic ovarian syndrome is linked to increased oxidative stress in Omani women. Int J Womens Health. 2018;10:763–771. doi: 10.2147/IJWH.S166461
- Nawar AS, Alwan ZHO, Sheikh QI. Gene expression and plasma level of CuZn and Mn superoxide dismutase in Iraqi women with polycystic ovary syndrome. Med J Babylon. 2022;19(4):691–696. doi: 10.4103/MJBL.MJBL_221_22
- Talat A, Satyanarayana P, Anand P. Association of superoxide dismutase level in women with polycystic ovary syndrome. J Obstet Gynecol India. 2022;72(1):6–12. doi: 10.1007/S13224-021-01430-z
- Agarwal A, Tadros H, Tvrdá E. Role of oxidants and antioxidants in female reproduction. In: Armstrong D, Stratton RD, editors. Oxidative stress and antioxidant protection: The science of free radical biology and disease. Hoboken, New-Jersey: Wiley Blackwell; 2016. P. 253–280. doi: 10.1002/9781118832431.ch16
- González F, Minium J, Rote NS, Kirwan JP. Hyperglycemia alters tumor necrosis factor-alpha release from mononuclear cells in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2005;90(9):5336–5342. doi: 10.1210/JC.2005-0694
- Yilmaz Ö, Calan M, Kume T, et al. The effect of prolactin levels on MPV in women with PCOS. Clin Endocrinol (Oxf). 2015;82(5):747–752. doi: 10.1111/CEN.12647
- Zhang J, Bao Y, Zhou X, Zheng L. Polycystic ovary syndrome and mitochondrial dysfunction. Reprod Biol Endocrinol. 2019;17:67. doi: 10.1186/s12958-019-0509-4.
- Porter AG, Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6(2):99–104. doi: 10.1038/SJ.CDD.4400476
- Uyanikoglu H, Sabuncu T, Dursun H, et al. Circulating levels of apoptotic markers and oxidative stress parameters in women with polycystic ovary syndrome: a case-controlled descriptive study. Biomarkers. 2017;22(7): 643–647. doi: 10.1080/1354750X.2016.1265004
- Nakagawa K, Hisano M, Sugiyama R, Yamaguchi K. Measurement of oxidative stress in the follicular fluid of infertility patients with an endometrioma. Arch Gynecol Obstet. 2016;293(1):197–202. doi: 10.1007/S00404-015-3834-7
- Jozwik M, Wolczynski S, Jozwik M, Szamatowicz M. Oxidative stress markers in preovulatory follicular fluid in humans. Mol Hum Reprod. 1999;5(5):409–413. doi: 10.1093/MOLEHR/5.5.409
- Prabhu YD, Borthakur A, Vellingiri B, et al. Increased pro-inflammatory cytokines in ovary and effect of γ-linolenic acid on adipose tissue inflammation in a polycystic ovary syndrome model. J Reprod Immunol. 2021;146:103345. doi: 10.1016/J.JRI.2021.103345
- Li Y, Zhang J, Liu Y-D, et al. Long non-coding RNA TUG1 and its molecular mechanisms in polycystic ovary syndrome. RNA Biol. 2020;17(12): 1798–1810. doi: 10.1080/15476286.2020.1783850
- Victor VM, Rovira-Llopis S, Bañuls C, et al. Insulin resistance in PCOS patients enhances oxidative stress and leukocyte Adhesion: role of myeloperoxidase. PLoS One. 2016;11(3):0151960. doi: 10.1371/JOURNAL.PONE.0151960
- Ali RM, Prokofev VN, Lomteva SV, et al. Genetic Associations between polymorphic loci in the antioxidant enzyme genes GPX4 (rs713041), GSTP1 (rs1695), and PON1 (rs662) and Polycystic Ovary Syndrome in Russian women. Medical Genetics. 2024;23(3):21–30. doi: 10.25557/2073-7998.2024.03.21-30 EDN: OPYXFW
- Dabravolski SA, Nikiforov NG, Eid AH, et al. Mitochondrial dysfunction and chronic inflammation in polycystic ovary syndrome. Int J Mol Sci. 2021;22(8):3923. doi: 10.3390/IJMS22083923
- Lomteva SV, Shkurat TP, Bugrimova ES, et al. Violation of the hormonal spectrum in polycystic ovaries in combination with insulin resistance. What is the trigger: Insulin resistance or polycystic ovary disease? Baghdad Sci J. 2022;19(5):20. doi: 10.21123/bsj.2022.6317
- Sugino N, Takiguchi S, Kashida S, et al. Superoxide dismutase expression in the human corpus luteum during the menstrual cycle and in early pregnancy. Mol Hum Reprod. 2000;6(1):19–25. doi: 10.1093/MOLEHR/6.1.19
- Rice S, Christoforidis N, Gadd C, et al. Impaired insulin-dependent glucose metabolism in granulosa-lutein cells from anovulatory women with polycystic ovaries. Hum Reprod. 2005;20(2):373–381. doi: 10.1093/HUMREP/DEH609
- Zhao H, Zhang J, Cheng X, et al. Insulin resistance in polycystic ovary syndrome across various tissues: an updated review of pathogenesis, evaluation, and treatment. J Ovarian Res. 2023;16(1):9. doi: 10.1186/S13048-022-01091-0
- Sukhikh GT, Biryukova AM, Nazarenko TA, et al. Analysis of the associations of gene polymorphisms with polycystic ovary syndrome and endocrine and metabolic disturbances. Obstetrics and Gynecology. 2011;(5):49–53. EDN: PFTUKF
- Dupont J, Scaramuzzi RJ. Insulin signalling and glucose transport in the ovary and ovarian function during the ovarian cycle. Biochem J. 2016,473(11):1483–1501. doi: 10.1042/BCJ20160124
- Zuo T, Zhu M, Xu W. Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxid Med Cell Longev. 2016;14:8589318. doi: 10.1155/2016/8589318
- Glotov AS, Vashukova ES, Kanaeva MD, et al. Study of the association of APOE, LPL, and NOS3 gene polymorphisms with the risk of vascular pathology in children and pregnant women. Ecological genetics. 2011;9(4):25–34. EDN: OQPKRH (In Russ.)
- Shkurat MA, Mashkina EV, Milyutina NP, Shkurat TP. The role of polymorphism of redox-sensitive genes in the mechanisms of oxidative stress in obesity and metabolic diseases. Ecological genetics. 2023;21(3):261–287. doi: 10.17816/ecogen562714 EDN: IXWKNL
- Shkurat MA, Mashkina EV, Milyutina NP, Shkurat TP. Polymorphism of antioxidant genes and overweight in children. Russian Journal of Genetics. 2024;60(7):954–961. doi: 10.1134/S102279542470039X EDN: SZCMDE
- Ali RM, Lomteva SV, Alexandrova AA, et al. Association of polymorphic locus rs4880 of superoxide dismutase 2 gene (SOD2) with Polycystic Ovary Syndrome: A meta-analysis. Research Results in Biomedicine. 2025;11(1):57–74. doi: 10.18413/2658-6533-2025-11-1-0-3 EDN: OHWCSQ
- Ali RM, Lomteva SV, Aleksandrova AA, et al. Effect of polymorphisms CYP17 (rs743572), SOD2 (rs4880) and CAT (rs1001179) on hormonal profile and redox status of blood serum and follicular fluid in patients with polycystic ovary syndrome. Gene Rep. 2023;33:101817. doi: 10.1016/J.GENREP.2023.101817
- Alkhuriji AF, Alomar SY, Babay ZA, et al. Association SOD2 and PON1 gene polymorphisms with polycystic ovary syndrome in Saudi women. Mol Syndromol. 2021;13(2):117–122. doi: 10.1159/000519527
- Arslan AO, Celik F, Kucukhuseyin O, et al. Investigation of variants of critically important antioxidant enzyme genes in patients with polycystic ovary syndrome. Exp Biomed Res. 2019;2(1):8–19. doi: 10.30714/J-EBR.2019147578
- Liu Q, Liu H, Bai H, et al. Association of SOD2 A16V and PON2 S311C polymorphisms with polycystic ovary syndrome in Chinese women. J Endocrinol Invest. 2019;42(8):909–921. doi: 10.1007/S40618-018-0999-5
- Salahshoor MR, Sohrabi M, Jalili F, et al. No evidence for a major effect of three common polymorphisms of the GPx1, MnSOD, and CAT genes on PCOS susceptibility. J Cell Biochem. 2018;120(2):2362–2369. doi: 10.1002/JCB.27564
Дополнительные файлы

