The genetic variation in pulmonate mollusk (Arianta arbustorum L.) in Leningrad Region

Cover Page

Cite item

Full Text

Abstract

Background. One of the most mysterious phenomenon related to biological invasions is the so-called “genetic paradox”. It is supposed that invasive species population starts from a small number of individuals and thus should possess low genetic variation, and then what mechanisms provide it successive distribution instead of lower survivorship in front of native species is not clear. It has been shown that there are several scenarios of invasion that may help to overcome this paradox. Here, we investigate genetic variation within and between the invasive populations of land snail in Leningrad region aimed to test the various probable invasion scenarios. Materials and methods. Samples were collected in Leningrad region in May-October 2014 at both shores of the Gulf of Finland with maximal distance between the sites in 80 km and stored in 96% ethanol. As a molecular marker to study genetic variation a sequence of DNA fragment of mitochondrial cytochrome oxidase 1 was used. Results. We revealed abnormally low haplotype and nucleotide diversity in the snail populations under study. Therewith four haplotypes uncovered among 47 specimens from the territory of approximately 100 km2 were unique for Leningrad area. Phylogenetic analysis showed one sample from Denmark in the same cluster with samples from Leningrad region. This indirectly point on colonization route from Central Europe through Denmark, but this assumption should be confirmed by enlarge sampling. Conclusions. The data obtained suggest the ‘bridgehead’ model of the land snail invasion in Leningrad region. In favor of this evidence that all haplotypes recovered in Leningrad area were unique, differing from the closest haplotype from Denmark by several mutations. This fact together with extremely low haplotype and nucleotide diversity most likely points that snails first accumulated at a small territory during a rather long period. Neutrality test are in accordance with balancing selection.

About the authors

Olga V Bondareva

ZIN RAS

Email: olga.v.bondareva@gmail.com
Trainee, Laboratory of molecular systematic

Marina I Orlova

ZIN RAS

Email: marina.orlova2012@gmail.com
Sc.D., Leading Researcher, Laboratory of Freshwater and Experimental Hydrobiology

Natalja I Abramson

ZIN RAS

Email: natalia_abr@mail.ru
Ph.d., head, Laboratory of molecular systematic. ZIN RAS. Leading researcher

References

  1. Алимов A., Богуцкая Н. Биологические инвазии в водных и наземных экосистемах. - М.: Товарищество научных изданий КМК, 2004. - 436 с. [Alimov A, Boguckaja N. Biologicheskie invazii v vodnyh i nazemnyh jekosistemah. M.: Tovarishhestvo nauchnyh izdanij KMK; 2004. 436 p. (In Russ.)]
  2. Лихарев И.М., Раммельмейер Е.С. Наземные моллюски фауны СССР. (Определители по фауне СССР, издаваемые Зоологическим институтом Академии наук СССР; т. 43). М.; Л.: Изд-во АН СССР, 1952. - 511 c. [Liharev IM, Rammel’mejer ES. Nazemnye molljuski fauny SSSR. (Opredeliteli po faune SSSR, izdavaemye Zoologicheskim institutom Akademii nauk SSSR; t. 43). Moscow; Leningrad: Izd-vo AN SSSR; 1952. 511 p. (In Russ.)]
  3. Маниатис Т., Фрич Э., Сэмбрук Дж. Молекулярное клонирование. Методы генетической инженерии. - М.: Мир, 1984. - 478 с. [Maniatis T, Frich J, Sjembruk G. Molekuljarnoe klonirovanie. Metody geneticheskoj inzhenerii. Moscow: Mir, 1984. 478 p. (In Russ.)]
  4. Шиков Е.В. Arianta arbustorum (Linnaeus, 1785) (Mollusca, Gastropoda) - агрессивный вселенец на русскую равнину: Mатериалы Международной научной конференции, посвященной 95-летию каф. ботаники Тверского государственного университета. - Тверь, 2012. - С. 380-381. [Shikov EV. Arianta arbustorum (Linnaeus, 1785) (Mollusca, Gastropoda) - agressivnyj vselenec na russkuju ravninu. Materialy Mezhdunarodnoj nauchnoj konferencii, posvjashhennoj 95-letiju kaf. Botaniki Tverskogo gosudarstvennogo universiteta. Tver’, 2012. P. 380-381. (In Russ.)]
  5. Шилейко А.А. Наземные моллюски надсемейства Helicoidea. Фауна СССР. Моллюски. Т. 3(6). - М.: Наука, 1978. - 384 с. [Shilejko AA. Nazemnye molljuski nadsemejstva Helicoidea. Fauna SSSR. Molljuski. Vol. 3(6). Moscow: Nauka, 1978. 384 p. (In Russ.)]
  6. Amsellem L, Noyer JL, Le Bourgeois T, Hossaert-McKey M. Comparison of genetic diversity of the invasive weed Rubus alceifolius Poir. (Rosaceae) in its native range and in areas of introduction, using amplified fragment length polymorphism (AFLP) markers. Mol Ecol. 2000;9:443-455.
  7. Ciosi M, Miller NJ, Kim KS, et al. Invasion of Europe by the western corn rootworm, Diabrotica virgifera virgifera: multiple transatlantic introductions with various reductions of genetic diversity. Mol Ecol. 2008;17:3614-3627.
  8. Cornuet JM, Santos F, Beaumont MA, et al. Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation. Bioinformatics. 2008;24:2713-2719.
  9. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods. 2012;9(8):772.
  10. Dlugosch KM, Parker IM. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol. 2008;17:431-449.
  11. Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin. 1987;19:11-15.
  12. Estoup A, Guillemaud T. Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol. 2010;19:4113-4130.
  13. Folmer O, Black M, Hoeh W, et al. DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3:294-299.
  14. Fu YX. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 1997;147:915-925.
  15. Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics. 1993;133:693-709.
  16. Haase M, Misof B. Dynamic gastropods: Stable shell polymorphism despite gene flow in the land snail Arianta arbustorum. J of Zoological Systematics and Evolutionary Research. 2009;47:105-114.
  17. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 1999;41:95-98.
  18. Kang M, Buckley YM, Lowe AJ. Testing the role of genetic factors across multiple independent invasions of the shrub Scotch broom (Cytisus scoparius). Mol Ecol. 2007;16:4662-4673
  19. Keller SR, Taylor DR. History, chance and adaptation during biological invasion: separating stochastic phenotypic evolution from response to selection. Ecol Lett. 2008;11:852-866.
  20. Kelly DW, Muirhead JR, Heath DD, Macisaac HJ. Contrasting patterns in genetic diversity following multiple invasions of fresh and brackish waters. Mol Ecol. 2006;15:3641-3653.
  21. Kolbe JJ, Glor RE, Schettino LRG, Lara AC, Larson A, Losos JB. Genetic variation increases during biological invasion by a Cuban lizard. Nature. 2004;431:177-181.
  22. Larkin MA, Blackshields G, Brown NP, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947-2948.
  23. Lawson Handley LJ, Estoup A, Evans DM, et al. Ecological genetics of invasive alien species. BioControl. 2011;56:409-428.
  24. Lee CE. Evolutionary genetics of invasive species. Trends Ecol Evol. 2002;17:386-391.
  25. Librado P, Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451-1452.
  26. Miller N, Estoup A, Toepfer S, et al. Multiple transatlantic introductions of the western corn rootworm. Science. 2005;310: 992.
  27. Reznick DN, Ghalambor CK. The population ecology of contemporary adaptations: what empirical studies reveal about the maggot Rhagoletis pomonella. Nature. 2001; 407:739-742.
  28. Sax DF, Stachowicz JJ, Brown JH, et al. Ecological and evolutionary insights from species invasions. Trends Ecol Evol. 2007;22:465-471.
  29. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585-595.
  30. Terhivuo J. Growth, reproduction and hibernation of Arianta arbustorum (L.) (Gastropoda, Helicidae) in southern Finland. Ann Zool Fennici. 1978;15:8-16.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Map with sampling localities. For GPS coordonates see table 1

Download (719KB)
3. Fig. 2. Maximum likelihood phylogenetic tree based on COI dataset. The width of the rectangle corresponds to the number of sequences in locality, that given as country name. Parsimony bootstrap frequencies that are greather than 50% are labelled on the tree

Download (97KB)
4. Fig. 3. (a) Median-joining haplotype network of COI mitochondrial sequences of A. arbustorum. The numbers indicate the number of mutational. steps between haplotypes. The size of the circles is proportional to the number of individuals with that haplotype. Name represent the geographical region of sampled specimens with exeption of Austria (b). Median-joining haplotype network of COI mitochondrial sequences of A. arbustorum from Leningrad region. The numbers indicate the number of mutational steps between haplotypes. The size of the circles is proportional to the number of individuals with that haplotype

Download (136KB)

Copyright (c) 2016 Bondareva O.V., Orlova M.I., Abramson N.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies