Detection of the DNA primary structure modifications induced by the base analog 6-n-hydroxylaminopurine in the alpha-test in yeast saccharomyces cerevisiae

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Background. The alpha-test allows to detect inherited genetic changes of different types, as well as phenotypic expression of primary DNA lesions before the lesions are fixed by repair. Here we investigate ability of the alpha-test to detect base modifications induced by 6-N-hydroxylaminopurine (HAP) and determine frequency of inherited and non-inherited genetic changes in yeast strains treated with HAP.

Materials and methods. The alpha-test is based on mating type regulation and detects cell type switch from α to a in heterothallic yeast Saccharomyces cerevisiae. The frequency of mating type switching reflects level of both spontaneous and induced by a mutagen DNA instability. The alpha-test may be performed in two variants: “illegitimate” hybridization and cytoduction. Conducting both complementary tests and analysis of phenotypes of the “illegitimate” hybrids and cytoductants allows to detect the full spectrum of genetic events that lead to mating type switching, such as chromosome III loss and chromosome III arm loss, mutations and temporary lesions, recombination and conversion.

Results. HAP increases the frequency of illegitimate hybridization by 5-fold, and illegitimate cytoduction by 10-fold. A large proportion of the primary lesions induced by HAP causes temporary mating type switch and the remainder parts are converted into inherited point mutations.

Conclusion. The alpha-test can detect HAP-induced base modifications and may be used to investigate the ratio between correct and error-prone processing of such primary DNA lesions. Like other genetic toxicology tests the alpha-test has limitations, which are discussed.

About the authors

Anna S. Zhuk

ITMO University

Author for correspondence.
Email: ania.zhuk@gmail.com
ORCID iD: 0000-0001-8926-8238
SPIN-code: 2223-5306
Scopus Author ID: 54953157500
ResearcherId: N-5270-2015

PhD, Researcher, Laboratory of Genomic Diversity, International Laboratory of Computer Technologies

Russian Federation, Saint Petersburg

Elena I. Stepchenkova

ITMO University; Vavilov Institute of General Genetics Russian Academy of Science

Email: stepchenkova@gmail.com
ORCID iD: 0000-0002-5854-8701
SPIN-code: 9121-7483
Scopus Author ID: 8862552900
ResearcherId: F-9931-2014

PhD, Head of Laboratory of Mutagenesis and Genetic Toxicology; Assistant, Department of Genetics and Biotechnology

Russian Federation, Saint Petersburg

Sergey G. Inge-Vechtomov

ITMO University; Vavilov Institute of General Genetics Russian Academy of Science

Email: ingevechtomov@gmail.com
SPIN-code: 3743-7626
Scopus Author ID: 23473232500

Doctor of Science, Director; Professor, Department of Genetics and Biotechnology

Russian Federation, Saint Petersburg

References

  1. Repnevskaya MV, Karpova TS, Inge-Vechtomov SG. Hybridization and cytoduction among yeast cells of the same mating type. Current Genetics. 1987;12(7): 511-517. https://doi.org/10.1007/Bf00419560.
  2. Степченкова Е.И., Коченова О.В., Инге-Вечтомов С.Г. «Незаконная» гибридизация и «незаконная» цитодукция у гетероталличных дрожжей Saccharomyces cerevisiae как система для анализа генетической активности экзогенных и эндогенных факторов в «альфа-тесте» // Вестник Санкт-Петербургского государственного университета. Серия 3. Биология. – 2009. – № 4. – C. 129–139. [Stepchenkova EI, Kochenova OV, Inge-Vechtomov SG. “Illegitimate” mating and “illegitimate” cytoduction in heterothallic yeast Saccharomyces cerevisiae as a system for analysis of genetic activity of exogenic and endogenic factors in “alfa-test”. Vestnik of St. Petersburg University. Series 3. Biology. 2009;(4):129-139. (In Russ.)]
  3. Inge-Vechtomov SG, Repnevskaya MV. Phenotypic expression of primary lesions of genetic material in Saccharomyces yeasts. Genome. 1989;31(2): 497-502. https://doi.org/10.1139/g89-097.
  4. Lee CS, Haber JE. Mating-type Gene Switching in Saccharomyces cerevisiae. Microbiol Spectr. 2015;3(2): MDNA3-0013-2014. https://doi.org/10.1128/microbiolspec.MDNA3-0013-2014.
  5. Степченкова Е.И., Коченова О.В., Жук А.С., и др. Фенотипическое проявление и взаимопревращение первичных повреждений генетического материала, учитываемых в альфа-тесте, у дрожжей Saccharomyces cerevisiae // Гигиена и санитария. – 2011. – T. 6. – C. 64–69. [Stepchenkova EI, Kochenova OV, Zhuk AS, et al. Phenotypic manifestation and transmutations of primary genetic material damages considered in the alpha-test on the yeast Saccharomyces cerevisiae. Hygiene & Sanitation. 2011;(6):64-69. (In Russ.)]
  6. Коченова О.В., Сошкина Ю.В., Степченкова Е.И., и др. Участие ДНК-полимераз репликативного обхода повреждений в поддержании целостности хромосом у дрожжей Saccharomyces cerevisiae // Биохимия. – 2011. – T. 76. – № 1. – C. 62–75. [Kochenova OV, Soshkina JV, Stepchenkova EI, et al. Participation of translesion synthesis DNA polymerases in the maintenance of chromosome integrity in yeast Saccharomyces cerevisiae. Biochemistry (Mosc). 2011;76(1):49-60. (In Russ.)]. https://doi.org/10.1134/s000629791101007x.
  7. Жук А.С., Ширяева А.А., Коченова О.В., и др. Альфа-тест — система для оценки генетически активных факторов // Актуальные проблемы гуманитарных и естественных наук. – 2013. – T. 11. – № 1. – C. 54–60. [Zhuk AS, Shiriaeva AA, Kochenova OV, et al. Alpha-test as a system to assessment of genetic activity factors. Actual problems of the humanities and the natural sciences. 2013;11(1):54-60. (In Russ.)]
  8. Жук А.С., Задорский С.П., Ширяева А.А., и др. Идентификация мутации kar1-1, приводящей к повышению частоты цитодукции и снижению частоты гибридизации у дрожжей Saccharomyces cerevisiae // Генетика. – 2018. – T. 54. – № 13. – C. 18–21. [Zhuk AS, Zadorsky SP, Shiriaeva AA, et al. Identification of the kar1-1 mutation, leading to increase of cytoduction frequency and decrease of hybridization frequency in yeast Saccharomyces cerevisiae. Genetika. 2018;54(13):18-21. (In Russ.)]
  9. Inge-Vechtomov SG, Pavlov YI, Noskov VN, et al. Tests for genetic activity in the yeast Saccharomyces cerevisiae: study of forward and reverse mutation, mitotic recombination and illegitimate mating induction. In: Ashby J, de Serres FJ, Draper M, et al. Progress in Mutation Research. Vol. 5. Evaluation of Short-Term Tests for Carcinogens. Report of the International Programme on Chemical Safety’s Collaborative Study on in vitro assays. Amsterdam, Elsevier Science; 1985. Р. 243-255.
  10. Shcherbakova PV, Noskov VN, Pshenichnov MR, et al. Base analog 6-N-hydroxylaminopurine mutagenesis in the yeast Saccharomyces cerevisiae is controlled by replicative DNA polymerases. Mutat Res. 1996;369(1-2):33-44. https://doi.org/10.1016/s0165-1218(96)90045-2.
  11. Shcherbakova PV, Pavlov YI. 3'—>5' exonucleases of DNA polymerases epsilon and delta correct base analog induced DNA replication errors on opposite DNA strands in Saccharomyces cerevisiae. Genetics. 1996;142(3):717-726.
  12. Lada AG, Stepchenkova EI, Waisertreiger IS, et al. Genome-wide mutation avalanches induced in diploid yeast cells by a base analog or an APOBEC deaminase. PLoS Genet. 2013; 9(9):e1003736. https://doi.org/10.1371/journal.pgen.1003736.
  13. Barrett JC. Induction of gene mutation in and cell transformation of mammalian cells by modified purines: 2-aminopurine and 6-N-hydroxylaminopurine. Proc Natl Acad Sci USA. 1981;78(9):5685-9. https://doi.org/10.1073/pnas.78.9.5685.
  14. Pavlov YI, Noskov VN, Lange EK, et al. The genetic activity of N6-hydroxyadenine and 2-amino-N6-hydroxyadenine in Escherichia coli, Salmonella typhimurium and Saccharomyces cerevisiae. Mutat Res. 1991;253(1):33-46. https://doi.org/10.1016/0165-1161(91)90343-7.
  15. Stepchenkova EI, Koz’min SG, Alenin VV, et al. [Genetic control of metabolism of mutagenic purine base analogs 6-hydroxylaminopurine and 2-amino-6-hydroxylaminopurine in yeast Saccharomyces cerevisiae. (In Russ.)]. Genetika. 2009;45(4):471-477.
  16. Williams TM, Fabbri RM, Reeves JW, et al. A new reversion assay for measuring all possible base pair substitutions in Saccharomyces cerevisiae. Genetics. 2005;170(3):1423-1426. https://doi.org/10.1534/genetics.105.042697.
  17. Kozmin SG, Schaaper RM, Shcherbakova PV, et al. Multiple antimutagenesis mechanisms affect mutagenic activity and specificity of the base analog 6-N-hydroxylaminopurine in bacteria and yeast. Mutat Res. 1998;402(1-2): 41-50. https://doi.org/10.1016/s0027-5107(97) 00280-7.
  18. Stepchenkova EI, Kozmin SG, Alenin VV, et al. Genome-wide screening for genes whose deletions confer sensitivity to mutagenic purine base analogs in yeast. BMC Genet. 2005;6:31. https://doi.org/10.1186/1471-2156-6-31.
  19. Shcherbakova PV, Pavlov YI. Mutagenic specificity of the base analog 6-N-hydroxylaminopurine in the URA3 gene of the yeast Saccharomyces cerevisiae. Mutagenesis. 1993;8(5):417-421. https://doi.org/10.1093/mutage/8.5.417.
  20. Kulikov VV, Derkatch IL, Noskov VN, et al. Mutagenic specificity of the base analog 6-N-hydroxylaminopurine in the LYS2 gene of yeast Saccharomyces cerevisiae. Mutat Res. 2001;473(2):151-161. https://doi.org/10.1016/s0027-5107(00)00142-1.
  21. Pavlov YI, Newlon CS, Kunkel TA. Yeast origins establish a strand bias for replicational mutagenesis. Mol Cell. 2002;10(1):207-213. https://doi.org/10.1016/s1097-2765(02)00567-1.
  22. Rose MD, Winston F, Hieter P. Methods in yeast genetics, a laboratory course manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1990. 198 p.
  23. Гланц C. Медико-биологическая статистика / пер. с англ. под ред. Н.Е. Бузикашвили, Д.В. Самойлова. – М.: Практика, 1999. – 459 с. [Glantz S. Primer of biostatistics. New York: McGraw-Hill Inc.; 1996. Translated from English ed. by N.E. Buzikashvili, D.V. Samoylov. Moscow: Praktika; 1999. 459 p. (In Russ.)]
  24. Vollset SE. Confidence intervals for a binomial proportion. Stat Med. 1993;12(9):809-824. https://doi.org/10.1002/sim.4780120902.
  25. Warren CD, Eckley DM, Lee MS, et al. S-phase checkpoint genes safeguard high-fidelity sister chromatid cohesion. Mol Biol Cell. 2004;15(4):1724-1735. https://doi.org/10. 1091/mbc.E03-09-0637.
  26. Yuen KW, Warren CD, Chen O, et al. Systematic genome instability screens in yeast and their potential relevance to cancer. Proc Natl Acad Sci USA. 2007;104(10):3925-3930. https://doi.org/10.1073/pnas.0610642104.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure: 1. Genetic events detected in the alpha test in the systems of "illegal" hybridization and cytoduction.

Download (305KB)
3. Figure: 2. The incorporation of 6-N-hydroxylaminopurine (HAP) into DNA during replication and the mechanism of gene mutations (transitions): a - GC → AT substitutions; b - replace AT → GC

Download (111KB)
4. Figure: 3. Distribution of classes of genetic events detected in the test for "illegal" hybridization, arising spontaneously and under the influence of HAP, in percentage ratio (a) and the frequency of spontaneous and induced HAP mutations and transient damages in the test for "illegal" hybridization (b). The graph shows the median for frequencies and its confidence interval. HR — loss of chromosome III; PPH - loss of the right shoulder of chromosome III; MEP - mutations and transient damage at the MATα locus; Rec - reciprocal recombination between the MATα locus and the HMRa cassette; Conv. - conversion of the HMRa cassette to the MATα locus. * The values ​​are statistically significantly different from the frequency of the same events occurring spontaneously, according to the Mann-Whitney test (p <0.0001). The underlining indicates a statistically significant change in the proportion of the corresponding class of genetic events after HAP treatment in comparison with the spontaneous level according to the Z-test.

Download (258KB)
5. Figure: 4. Distribution of classes of genetic events detected in the test for "illegal" cytoduction, in percentage, arising spontaneously and under the influence of HAP (a) and the frequency of spontaneous and induced by HAPs inherited and non-inherited changes in genetic material in the test for "illegal" cytoduction (b ). VP - temporary damage at the MATα locus (simultaneously in MATα1 and MATα2, or in a two-sided promoter); Conv. - conversion of the HMRa cassette to the MATα locus; Mut a * - mutations simultaneously in MATα1 and MATα2, or in a two-sided promoter, deletion of MATα); Mut. n / m - mutations in MATα1 or MATα2; * - the values ​​are statistically significantly different from the frequency of the same events occurring spontaneously, according to the Mann-Whitney test (p <0.0001). The underlining indicates a statistically significant change in the proportion of the class of genetic events after HAP treatment in comparison with the corresponding proportion of spontaneous events according to the Z-test.

Download (174KB)

Copyright (c) 2020 Zhuk A.S., Stepchenkova E.I., Inge-Vechtomov S.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies