A new era of bioinformatics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Bioinformatics is a rapidly growing discipline at the interface of biology, computer science, and mathematics.Recent scientific and technological advances in biological and biomedical sciences have led to a rapid increase in data generation. The analysis and interpretation of such data requires powerful computational tools and specialists with deep expertise in various fields, including molecular biology, genetics, programming, and mathematics. Currently, machine learning and deep learning methods are being rapidly integrated into various fields of biology and medicine, significantly transforming bioinformatic solutions and marking the advent of a new era in bioinformatics. The development of new algorithms and efficient data analysis methods using artificial intelligence forms the foundation for the future growth of this field. In this context, the demand for specialists capable of bridging the gap between biological and mathematical disciplines continues to grow, necessitating the adaptation of educational programs. This article reviews recent trends in bioinformatics, including the development of multi-omics approaches and the use of artificial intelligence, and highlights the importance of multidisciplinary education with advanced training in mathematics and statistics to prepare a new generation of scientists capable of driving innovation in this dynamic field.

About the authors

Anna Yu. Aksenova

Saint Petersburg State University

Author for correspondence.
Email: a.aksenova@spbu.ru
ORCID iD: 0000-0002-1601-1615
SPIN-code: 4914-7675

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Anna S. Zhuk

Saint Petersburg State University; ITMO University; Vavilov Institute of General Genetics Russian Academy of Science, Saint Petersburg brunch

Email: ania.zhuk@gmail.com
ORCID iD: 0000-0001-8683-9533
SPIN-code: 2223-5306

Cand. Sci. (Biology), Assistant Professor

Russian Federation, Saint Petersburg; Saint Petersburg; Saint Petersburg

Elena I. Stepchenkova

Saint Petersburg State University; Vavilov Institute of General Genetics Russian Academy of Science, Saint Petersburg brunch

Email: stepchenkova@gmail.com
ORCID iD: 0000-0002-5854-8701
SPIN-code: 9121-7483

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg; Saint Petersburg

Viacheslav A. Semenikhin

Matheomics, Skolkovo Innovation Center

Email: vasemenikhin@hse.ru
ORCID iD: 0000-0001-6923-0363
SPIN-code: 2251-5652
Russian Federation, Moscow

Mikhail А. Langovoy

Center for Artificial Intelligence SPbU

Email: mikhail@langovoy.com
ORCID iD: 0000-0002-7593-0830
SPIN-code: 6905-9451

Dr. rer. nat.

Russian Federation, Saint Petersburg

References

  1. Alser M, Lindegger J, Firtina C, et al. From molecules to genomic variations: Accelerating genome analysis via intelligent algorithms and architectures. Comput Struct Biotechnol J. 2022;20:4579–4599.doi: 10.1016/j.csbj.2022.08.019
  2. Tan YC, Kumar AU, Wong YP, Ling APK. Bioinformatics approaches and applications in plant biotechnology. J Genet Eng Biotechnol. 2022;20(1):1–13. doi: 10.1186/S43141-022-00394-5/TABLES/2
  3. Naqvi RZ, Mahmood MA, Mansoor S, et al. Omics-driven exploration and mining of key functional genes for the improvement of food and fiber crops. Front Plant Sci. 2023;14:1273859. doi: 10.3389/FPLS.2023.1273859/PDF
  4. Srivastava R. Applications of artificial intelligence multiomics in precision oncology. J Cancer Res Clin Oncol. 2023;149:503–510.doi: 10.1007/S00432-022-04161-4/METRICS
  5. Pezoulas VC, Hazapis O, Lagopati N, et al. Machine learning approaches on high throughput ngs data to unveil mechanisms of function in biology and disease. Cancer Genom Proteom. 2021;18(5):605–626.doi: 10.21873/CGP.20284
  6. Sadee W, Wang D, Hartmann K, Toland AE. Pharmacogenomics: Driving personalized medicine. Pharmacol Rev. 2023;75(4):789–814.doi: 10.1124/PHARMREV.122.000810
  7. Uesaka K, Oka H, Kato R, et al. Bioinformatics in bioscience and bioengineering: recent advances, applications, and perspectives. J Biosci Bioeng. 2022;134(5):363–373. doi: 10.1016/J.JBIOSC.2022.08.004
  8. Jamialahmadi H, Khalili-Tanha G, Nazari E, Rezaei-Tavirani M. Artificial intelligence and bioinformatics: A journey from traditional techniques to smart approaches. Gastroenterol Hepatol Bed Bench. 2024;17(3):241–252. doi: 10.22037/GHFBB.V17I3.2977
  9. Riess O, Sturm M, Menden B, et al. Genomes in clinical Care.NPJ Genomic Med. 2024;9:20. doi: 10.1038/s41525-024-00402-2
  10. Mosele F, Remon J, Mateo J, et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: A report from the ESMO Precision Medicine Working Group. Ann Oncol. 2020;31(11):1491–1505. doi: 10.1016/j.annonc.2020.07.014
  11. Morganti S, Tarantino P, Ferraro E, et al. Next generation sequencing (NGS): A revolutionary technology in pharmacogenomics and personalized medicine in cancer. In: Ruiz-Garcia E, Astudillo-de la Vega H, editors. Translational research and onco-omics applications in the era of cancer personal genomics. Advances in experimental medicine and biology. Vol. 1168. Springer,Cham; 2019. P. 9–30. doi: 10.1007/978-3-030-24100-1_2
  12. Edsjö A, Gisselsson D, Staaf J, et al. Current and emerging sequencing-based tools for precision cancer medicine. Mol Aspects Med. 2024;96:101250. doi: 10.1016/J.MAM.2024.101250
  13. Abdellaoui A, Yengo L, Verweij KJH, Visscher PM. 15 years of GWAS discovery: Realizing the promise. Am J Hum Genet. 2023;110(2):179–194. doi: 10.1016/j.ajhg.2022.12.011
  14. Defo J, Awany D, Ramesar R. From SNP to pathway-based GWAS meta-analysis: Do current meta-analysis approaches resolve power and replication in genetic association studies? Brief Bioinform. 2023;24(1):bbac600. doi: 10.1093/bib/bbac600
  15. Yadav D, Patil-Takbhate B, Khandagale A, et al. Next-generation sequencing transforming clinical practice and precision medicine. Clin Chim Acta. 2023;551:117568. doi: 10.1016/J.CCA.2023.117568
  16. Roberto TM, Jorge MA, Francisco GV, et al. Strategies for improving detection of circulating tumor DNA using next generation sequencing. Cancer Treat Rev. 2023;119:102595. doi: 10.1016/J.CTRV.2023.102595
  17. Shegekar T, Vodithala S, Juganavar A. The emerging role of liquid biopsies in revolutionising cancer diagnosis and therapy. Cureus. 2023;15(8): e43650. doi: 10.7759/CUREUS.43650
  18. Jenkins M, Seasely AR, Subramaniam A. Prenatal genetic testing 2: Diagnostic tests. Curr Opin Pediatr. 2022;34(6):553–558.doi: 10.1097/MOP.0000000000001174
  19. Schäfer RA, Guo Q, Yang R. ScanNeo2: A comprehensive workflow for neoantigen detection and immunogenicity prediction from diverse genomic and transcriptomic alterations. Bioinformatics. 2023;39(11): btad659. doi: 10.1093/bioinformatics/btad659
  20. Xie N, Shen G, Gao W, et al. Neoantigens: Promising targets for cancer therapy. Signal Transduct Target Ther. 2023;8:9.doi: 10.1038/s41392-022-01270-x
  21. Kiyotani K, Chan HT, Nakamura Y. Immunopharmacogenomics towards personalized cancer immunotherapy targeting neoantigens. Cancer Sci. 2018;109(3):542–549. doi: 10.1111/CAS.13498
  22. See P, Lum J, Chen J, Ginhoux F. A single-cell sequencing guide for immunologists. Front Immunol. 2018;9:415498.doi: 10.3389/FIMMU.2018.02425/BIBTEX
  23. Choi H, Kim H, Chung H, et al. Application of computational algorithms for single-cell RNA-Seq and ATAC-Seq in neurodegenerative diseases. Brief Funct Genom. 2025;24: elae44. doi: 10.1093/BFGP/ELAE044
  24. Lee J-W, Cho J-Y. Comparative epigenetics of domestic animals: Focusing on DNA accessibility and its impact on gene regulation and traits. J Vet Sci. 2025;26(1):24259. doi: 10.4142/JVS.24259
  25. Cox OH, Seifuddin F, Guo J, et al. Implementation of the Methyl-Seq platform to identify tissue- and sex-specific DNA methylation differences in the rat epigenome. Epigenetics. 2024;19:2393945.doi: 10.1080/15592294.2024.2393945
  26. Li S-J, Gao X, Wang Z-H, et al. Cell-free DNA methylation patterns in aging and their association with inflamm-aging. Epigenomics. 2024;16(10):715–731.doi: 10.1080/17501911.2024.2340958
  27. Hubert J-N, Iannuccelli N, Cabau C, et al. Detection of DNA methylation signatures through the lens of genomic imprinting. Sci Rep. 2024;14:1694. doi: 10.1038/s41598-024-52114-3
  28. Lee H, Martinez-Agosto JA, Rexach J, Fogel BL. Next generation sequencing in clinical diagnosis. Lancet Neurol. 2019;18(5):426.doi: 10.1016/S1474-4422(19)30110-3
  29. Gibbs SN, Peneva D, Cuyun Carter G, et al. Comprehensive review on the clinical impact of next-generation sequencing tests for the management of advanced cancer. JCO Precis Oncol. 2023;7:715. doi: 10.1200/PO.22.00715
  30. Nurk S, Koren S, Rhie A, et al. The complete sequence of a human genome. Science. 2022;376(6588):44–53. doi: 10.1126/SCIENCE.ABJ6987
  31. Hoyt SJ, Storer JM, Hartley GA, et al. From telomere to telomere: the transcriptional and epigenetic state of human repeat elements. Science. 2022;376(6588):eabk3112. doi: 10.1126/science.abk3112
  32. Stephens ZD, Lee SY, Faghri F, et al. Big Data: Astronomical or genomical? PLOS Biol. 2015;13:e1002195. doi: 10.1371/JOURNAL.PBIO.1002195
  33. Katz K, Shutov O, Lapoint R, et al. The sequence read archive: A decade more of explosive growth. Nucleic Acids Res. 2022;50(D1):D387–D390. doi: 10.1093/NAR/GKAB1053
  34. Danielewski M, Szalata M, Nowak JK, et al. History of biological databases, their importance, and existence in modern scientific and policy context. Genes. 2025;16(1):100. doi: 10.3390/GENES16010100/S1
  35. Fedorov II, Protasov SA, Tarasova IA, Gorshkov MV. Ultrafast proteomics. Biochem. 2024;89:1349–1361. doi: 10.1134/S0006297924080017/FIGURES/4
  36. Anderton CR, Uhrig RG. The promising role of proteomes and metabolomes in defining the single-cell landscapes of plants. New Phytol. 2025;245(3):945–948. doi: 10.1111/NPH.20303
  37. Godoy Sanches PH, Clemente De Melo N, Porcari AM, Miguel De Carvalho L. Integrating molecular perspectives: strategies for comprehensive multi-omics integrative data analysis and machine learning applications in transcriptomics, proteomics, and metabolomics. Biology. 2024;13(11):848. doi: 10.3390/BIOLOGY13110848
  38. Wu S, Zhang S, Liu CM, et al. Recent advances in mass spectrometry-based protein interactome studies. Mol Cell Proteom. 2025;24(1):100887. doi: 10.1016/j.mcpro.2024.100887
  39. Dang V, Voigt B, Marcotte EM. Progress toward a comprehensive brain protein interactome. Biochem Soc Trans. 2025;53(1):303–314.doi: 10.1042/BST20241135
  40. Rahmati S, Emili A. Proximity labeling: precise proteomics technology for mapping receptor protein neighborhoods at the cancer cell surface.Cancers. 2025;17(2):179. doi: 10.3390/cancers17020179
  41. Edwards AN, Hsu KL. Emerging opportunities for intact and native protein analysis using chemical proteomics. Anal Chim Acta. 2025;1338:343551. doi: 10.1016/J.ACA.2024.343551
  42. Goel RK, Bithi N, Emili A. Trends in co-fractionation mass spectrometry: a new gold-standard in global protein interaction network discovery.Curr Opin Struct Biol. 2024;88:102880. doi: 10.1016/J.SBI.2024.102880
  43. Kim SG, Hwang JS, George NP, et al. Integrative metabolome and proteome analysis of cerebrospinal fluid in Parkinson’s disease. Int J Mol Sci. 2024;25(21):11406. doi: 10.3390/IJMS252111406/S1
  44. Wu D, Zhang L, Ding F. Current status and future directions of application of urine proteomics in neonatology. Front Pediatr. 2024;12:1509468. doi: 10.3389/FPED.2024.1509468/BIBTEX
  45. Kliuchnikova AA, Ilgisonis EV, Archakov AI, et al. Proteomic markers of aging and longevity: A systematic review. Int J Mol Sci. 2024;25(23):12634. doi: 10.3390/IJMS252312634/S1
  46. Nalla LV, Kanukolanu A, Yeduvaka M, Gajula SNR. Advancements in single-cell proteomics and mass spectrometry-based techniques for unmasking cellular diversity in triple negative breast cancer. Proteomics — Clin Appl. 2025;19(1):e202400101. doi: 10.1002/PRCA.202400101
  47. Pomella S, Melaiu O, Cifaldi L, et al. biomarkers identification in the microenvironment of oral squamous cell carcinoma: A systematic review of proteomic studies. Int J Mol Sci. 2024;25(16):8929.doi: 10.3390/IJMS25168929/S1
  48. Zhang Z, Huang J, Zhang Z, et al. Application of omics in the diagnosis, prognosis, and treatment of acute myeloid leukemia. Biomark Res. 2024;12:60. doi: 10.1186/s40364-024-00600-1
  49. ar do Perez G, Barber GP, Benet-Pages A, et al. The UCSC genome browser database: 2025 update. Nucleic Acids Res. 2025;53(D1):D1243–D1249. doi: 10.1093/NAR/GKAE974
  50. Dyer SC, Austine-Orimoloye O, Azov AG, et al. Ensembl 2025. Nucleic Acids Res. 2025;53(D1):D948–D957. doi: 10.1093/NAR/GKAE1071
  51. Rodriguez-Tomé P, Stoehr PJ, Cameron GN, Flores TP. The European Bioinformatics Institute (EBI) databases. Nucleic Acids Res. 1996;24(1):6–12. doi: 10.1093/NAR/24.1.6
  52. Consortium TU, Bateman A, Martin M-J, et al. UniProt: The universal protein knowledgebase in 2025. Nucleic Acids Res. 2025;53(D1):D609–D617. doi: 10.1093/NAR/GKAE1010
  53. Zardecki C, Dutta S, Goodsell DS, et al. PDB-101: Educational resources supporting molecular explorations through biology and medicine. Protein Sci. 2022;31(1S):129–140. doi: 10.1002/PRO.4200
  54. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. doi: 10.1093/NAR/28.1.27
  55. Chang A, Jeske L, Ulbrich S, et al. BRENDA, the ELIXIR core data resource in 2021: New developments and updates. Nucleic Acids Res. 2021;49(D1):D498–D508. doi: 10.1093/NAR/GKAA1025
  56. Mondello A, Dal Bo M, Toffoli G, Polano M. Machine learning in onco-pharmacogenomics: a path to precision medicine with many challenges. Front Pharmacol. 2024;14:1260276. doi: 10.3389/fphar.2023.1260276
  57. Erfanian N, Heydari AA, Feriz AM, et al. Deep learning applications in single-cell genomics and transcriptomics data analysis. Biomed Pharmacother. 2023;165:115077. doi: 10.1016/J.BIOPHA.2023.115077
  58. Athaya T, Ripan RC, Li X, Hu H. Multimodal deep learning approaches for single-cell multi-omics data integration. Brief Bioinform. 2023;24(5): bbad313. doi: 10.1093/BIB/BBAD313
  59. Gulati GS, D’Silva JP, Liu Y, et al. Profiling cell identity and tissue architecture with single-cell and spatial transcriptomics. Nat Rev Mol Cell Biol. 2024;26:11–31. doi: 10.1038/s41580-024-00768-2
  60. Rivero-Garcia I, Torres M, Sánchez-Cabo F. Deep generative models in single-cell omics. Comput Biol Med. 2024;176:108561.doi: 10.1016/J.COMPBIOMED.2024.108561
  61. Kang M, Ko E, Mersha TB. A roadmap for multi-omics data integration using deep learning. Brief Bioinform. 2022;23(1):bbab454. doi: 10.1093/BIB/BBAB454
  62. Pun FW, Ozerov IV, Zhavoronkov A. AI-powered therapeutic target discovery. Trends Pharmacol Sci. 2023;44(9):561–572.doi: 10.1016/j.tips.2023.06.010
  63. Mann M, Kumar C, Zeng W-F, Strauss MT. Artificial intelligence for proteomics and biomarker discovery. Cell Syst. 2021;12(8):759–770. doi: 10.1016/j.cels.2021.06.006
  64. Wang L, Wen Z, Liu S-W, et al. Overview of AlphaFold2 and breakthroughs in overcoming its limitations. Comput Biol Med. 2024;176:108620. doi: 10.1016/j.compbiomed.2024.108620
  65. Zhang H, Lan J, Wang H, et al. AlphaFold2 in biomedical research: facilitating the development of diagnostic strategies for disease. Front Mol Biosci. 2024;11:1414916. doi: 10.3389/FMOLB.2024.1414916
  66. Varga JK, Schueler-Furman O. Who binds better? Let Alphafold2 decide! Angew Chemie. Int Ed. 2023;62(28):e202303526.doi: 10.1002/anie.202303526
  67. Bertoline LMF, Lima AN, Krieger JE, Teixeira SK. Before and after AlphaFold2: An overview of protein structure prediction. Front Bioinform. 2023;3:1120370. doi: 10.3389/FBINF.2023.1120370
  68. Borkakoti N, Thornton JM. AlphaFold2 protein structure prediction: Implications for drug discovery. Curr Opin Struct Biol. 2023;78:102526. doi: 10.1016/J.SBI.2022.102526
  69. Leman JK, Weitzner BD, Lewis SM, et al. Macromolecular modeling and design in rosetta: Recent methods and frameworks. Nat Methods. 2020;17:665–680. doi: 10.1038/S41592-020-0848-2
  70. Baek M, DiMaio F, Anishchenko I, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science. 2021;373(6557):871–876. doi: 10.1126/science.abj8754
  71. Zhang G, Luo Y, Dai X, Dai Z. Benchmarking deep learning methods for predicting CRISPR/Cas9 SgRNA on- and off-target activities. Brief Bioinform. 2023;24(6):bbad333. doi: 10.1093/BIB/BBAD333
  72. Sherkatghanad Z, Abdar M, Charlier J, Makarenkov V. Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: A review. Brief Bioinform. 2023;24(3):bbad131. doi: 10.1093/BIB/BBAD131
  73. Lee M. Deep learning in CRISPR-cas systems: A review of recent studies. Front Bioeng Biotechnol. 2023;11:1226182. doi: 10.3389/fbioe.2023.1226182
  74. Sun D, Chen W, He J, et al. A novel method for screening malignant hematological diseases by constructing an optimal machine learning model based on blood cell parameters. BMC Med Inform Decis Mak. 2025;25:72. doi: 10.1186/s12911-025-02892-1
  75. Shan R, Li X, Chen J, et al. Interpretable machine learning to predict the malignancy risk of follicular thyroid neoplasms in extremely unbalanced data: retrospective cohort study and literature review. JMIR cancer.2025;11:e66269–e66269. doi: 10.2196/66269
  76. Ayhan B, Ayan E, Atsü S. Detection of dental caries under fixed dental prostheses by analyzing digital panoramic radiographs with artificial intelligence algorithms based on deep learning methods. BMC Oral Health. 2025;25:216. doi: 10.1186/s12903-025-05577-3
  77. Kovács KA, Kerepesi C, Rapcsák D, et al. Machine learning prediction of breast cancer local recurrence localization, and distant metastasis after local recurrences. Sci Rep. 2025;15:4868. doi: 10.1038/s41598-025-89339-9
  78. Guo L, Wang W, Xie X, et al. Machine learning-based models for genomic predicting neoadjuvant chemotherapeutic sensitivity in cervical cancer. Biomed Pharmacother. 2023;159:114256.doi: 10.1016/J.BIOPHA.2023.114256
  79. Zhao Y, Fu Z, Barnett EJ, et al. Genome data based deep learning identified new genes predicting pharmacological treatment response of attention deficit hyperactivity disorder. Transl Psychiatry. 2025;15:46.doi: 10.1038/s41398-025-03250-5
  80. Ivakhnenko AG, Lapa VG. Cybernetic predictive devices. Kyiv: Naukova Dumka; 1965. 214 p. URL: https://gwern.net/doc/ai/1966-ivakhnenko.pdf
  81. Ivakhnenko AG. Polynomial theory of complex systems. In: IEEE Trans. Syst. Man Cybern. 1971. Vol. 1. P. 364–378. doi: 10.1109/TSMC.1971.4308320
  82. Vapnik VN, Chervonenkis AJ. On one class of learning algorithms for pattern recognition. Automation and Remote Control. 1964;25:937–945. (In Russ.)
  83. Boltyansky VG, Gamkrelidze RV, Pontryagin LS. To the theory of optimal processes. Reports of the USSR Academy of Sciences. 1956;110:7–10. (In Russ.)
  84. Galushkin AI. Synthesis of multilayer systems of pattern recognition. Moscow: Energia; 1974. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».