Optimization of conditions for the productionof Hsp70 phaperones in Saccharomyces cerevisiae pells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Molecular chaperones regulate the proper folding of proteins in the cell. Members of the Hsp70 family, including the Ssa1 protein, are molecular chaperones that prevent protein aggregation, promote their proper folding and degradation, and are the most common among the various chaperones, highly conserved, and present in a variety of organisms.

AIM: The aim of the work was to optimize methods for the production, extraction and purification of Ssa1 protein from cells of Saccharomyces cerevisiae.

MATERIALS AND METHODS: The SSA1-4 gene sequences were cloned into a vector under the control of the TEF1 promoter and fused with a sequence encoding His6-tag. Yeast strains with different genetic backgrounds were transformed with the obtained constructs, and the production of Ssa1-4 proteins was assessed under different cultivation conditions. Affinity and ion-exchange chromatography were used to purify the Ssa1 protein. Fluorescence microscopy was used to confirm the localization of recombinant Ssa proteins fused with TagRFP-T in the cytosol.

RESULTS AND CONCLUSIONS: Methods for the production, extraction and purification of Ssa1 protein from yeast cells have been optimized. The same approach can be further used to purify other Hsp70 proteins and adapted to obtain various proteins from eukaryotic cells.

About the authors

Andrew G. Matveenko

Saint Petersburg State University

Email: a.matveenko@spbu.ru
ORCID iD: 0000-0002-9458-0194
SPIN-code: 9877-5352

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Andrew A. Tsvetkov

Saint Petersburg State University

Email: st096303@student.spbu.ru
ORCID iD: 0009-0007-3673-7310
Russian Federation, Saint Petersburg

Tatyana M. Rogoza

Saint Petersburg State University; St. Petersburg Branch, Vavilov Institute of General Genetics of the Russian Academy of Sciences

Email: t.rogoza@spbu.ru
ORCID iD: 0000-0003-2981-0421
SPIN-code: 7582-1519

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg; Saint Petersburg

Yury A. Barbitoff

Saint Petersburg State University

Email: barbitoff@bk.ru
ORCID iD: 0000-0002-3222-440X
SPIN-code: 1053-6164

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Galina A. Zhouravleva

Saint Petersburg State University

Author for correspondence.
Email: g.zhuravleva@spbu.ru
ORCID iD: 0000-0002-3013-4662
SPIN-code: 3132-6884

Dr. Sci. (Biology), Professor

Russian Federation, Saint Petersburg

References

  1. Liu Q, Liang C, Zhou L. Structural and functional analysis of the Hsp70/Hsp40 chaperone system. Protein Sci. 2020;29(2):378–390.doi: 10.1002/PRO.3725
  2. Kampinga HH, Craig EA. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol. 2010;11(8):579–592. doi: 10.1038/NRM2941
  3. Kominek J, Marszalek J, Neuvéglise C, et al. The complex evolutionary dynamics of Hsp70s: a genomic and functional perspective. Genome Biol Evol. 2013;5(12):2460–2477. doi: 10.1093/GBE/EVT192
  4. Boorstein WR, Ziegelhoffer T, Craig EA. Molecular evolution of the HSP70 multigene family. J Mol Evol. 1994;38(1):1–17. doi: 10.1007/BF00175490
  5. Lotz SK, Knighton LE, Nitika, et al. Not quite the SSAme: unique roles for the yeast cytosolic Hsp70s. Curr Genet. 2019;65(5):1127–1134.doi: 10.1007/S00294-019-00978-8
  6. Werner-Washburne M, Craig EA. Expression of members of the Saccharomyces cerevisiae hsp70 multigene family. Genome. 1989;31(2):684–689. doi: 10.1139/G89-125
  7. Stone DE, Craig EA. Self-regulation of 70-kilodalton heat shock proteins in Saccharomyces cerevisiae. Mol Cell Biol. 1990;10(4):1622–1632. doi: 10.1128/MCB.10.4.1622-1632.1990
  8. Christiano R, Nagaraj N, Fröhlich F, Walther TC. Global proteome turnover analyses of the yeasts S. cerevisiae and S. pombe. Cell Rep. 2014;9(5):1959–1965. doi: 10.1016/J.CELREP.2014.10.065
  9. Zhouravleva GA, Bondarev SA, Trubitsina NP. How big is the yeast prion universe? Int J Mol Sci. 2023;24(14):11651. doi: 10.3390/IJMS241411651
  10. Barbitoff YA, Matveenko AG, Zhouravleva GA. Differential interactions of molecular chaperones and yeast prions. J Fungi. 2022;8(2):122.doi: 10.3390/JOF8020122
  11. Schwimmer C, Masison DC. Antagonistic interactions between yeast [PSI+] and [URE3] prions and curing of [URE3] by Hsp70 protein chaperone Ssa1p but not by Ssa2p. Mol Cell Biol. 2002;22(11):3590–3598.doi: 10.1128/MCB.22.11.3590-3598.2002
  12. Matveenko AG, Barbitoff YA, Jay-Garcia LM, et al. Differential effects of chaperones on yeast prions: CURrent view. Curr Genet. 2018;64(2):317–325. doi: 10.1007/S00294-017-0750-3
  13. Allen KD, Wegrzyn RD, Chernova TA, et al. Hsp70 chaperones as modulators of prion life cycle: Novel effects of Ssa and Ssb on the Saccharomyces cerevisiae prion [PSI+]. Genetics. 2005;169(3):1227–1242.doi: 10.1534/genetics.104.037168
  14. Barbitoff YA, Matveenko AG, Moskalenko SE, et al. To CURe or not to CURe? Differential effects of the chaperone sorting factor Cur1 on yeast prions are mediated by the chaperone Sis1. Mol Microbiol. 2017;105(2):242–257.doi: 10.1111/MMI.13697
  15. Sharma D, Masison DC. Functionally redundant isoforms of a yeast Hsp70 chaperone subfamily have different antiprion effects. Genetics 2008;179(3):1301–1311. doi: 10.1534/GENETICS.108.089458
  16. Sharma D, Martineau CN, Le Dall MT, et al. Function of SSA subfamily of Hsp70 within and across species varies widely in complementing Saccharomyces cerevisiae cell growth and prion propagation. PLoS One.2009;4(8):e6644. doi: 10.1371/JOURNAL.PONE.0006644
  17. Bush GL, Meyer DI. The refolding activity of the yeast heat shock proteins Ssa1 and Ssa2 defines their role in protein translocation. J Cell Biol. 1996;135(5):1229–1237. doi: 10.1083/JCB.135.5.1229
  18. Deshaies RJ, Koch BD, Werner-Washburne M, et al. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature. 1988;332(6167):800–805. doi: 10.1038/332800A0
  19. Gilbert CS, van den Bosch M, Green CM, et al. The budding yeast Rad9 checkpoint complex: chaperone proteins are required for its function.EMBO Rep. 2003;4(10):953–958. doi: 10.1038/SJ.EMBOR.EMBOR935
  20. McClellan AJ, Endres JB, Vogel JP, et al. Specific molecular chaperone interactions and an ATP-dependent conformational change are required during posttranslational protein translocation into the yeast ER. Mol Biol Cell. 1998;9(12):3533–3545. doi: 10.1091/MBC.9.12.3533
  21. Krzewska J, Melki R. Molecular chaperones and the assembly of the prion Sup35p, an in vitro study. EMBO J. 2006;25(4):822–833.doi: 10.1038/SJ.EMBOJ.7600985
  22. Grant GN, Jessee J, Bloom FR, Hanahan D. Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. PNAS. 1990;87(12):4645–4649. doi: 10.1073/PNAS.87.12.4645
  23. Kaiser C, Michaelis S, Mitchell A. Methods in yeast genetics. New York: Cold Spring Harbor Laboratory Press; Cold Spring Harbor; 1994.
  24. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning a laboratory manual. 2nd edit. New York: Cold Spring Harbor Laboratory Press;Cold Spring Harbor; 1989.
  25. Inge-Vechtomov SG. Identification of some linkage groups of Peterhof breeding stocks of yeast. Genetika. 1971;7(9):113–124. (In Russ.)
  26. Gietz RD. Yeast Transformation by the LiAc/SS Carrier DNA/PEG Method. In: Xiao W, editor. Yeast Protocols. New York: Springer New York; 2014. P. 33–44. doi: 10.1007/978-1-4939-0799-1_4
  27. Chernoff YO, Lindquist SL, Ono BI, et al. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI+]. Science. 1995;268(5212):880–884. doi: 10.1126/SCIENCE.7754373
  28. Newnam GP, Wegrzyn RD, Lindquist SL, Chernoff YO. Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Mol Cell Biol. 1999;19(2):1325–1333. doi: 10.1128/MCB.19.2.1325
  29. Agaphonov M, Alexandrov A. Self-excising integrative yeast plasmid vectors containing an intronated recombinase gene. FEMS Yeast Res. 2014;14(7):1048–1054. doi: 10.1111/1567-1364.12197
  30. Matveenko AG, Ryzhkova VE, Zaytseva NA, et al. Processing of fluorescent proteins may prevent detection of prion particles in [PSI+] cells. Biology. 2022;11(12):1688. doi: 10.3390/BIOLOGY11121688
  31. Okamoto A, Hosoda N, Tanaka A, et al. Proteolysis suppresses spontaneous prion generation in yeast. J Biol Chem. 2017;292(49):20113–20124. doi: 10.1074/JBC.M117.811323.
  32. Brachmann CB, Davies A, Cost GJ, et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998;14(2):115–132. doi: 10.1002/(SICI)1097-0061(19980130)14:2
  33. Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989;122(1):19–27. doi: 10.1093/GENETICS/122.1.19
  34. James P, Pfund C, Craig EA. Functional specificity among Hsp70 molecular chaperones. Science. 1997;275(5298):387–389. doi: 10.1126/SCIENCE.275.5298.387
  35. Malcova I, Farkasovsky M, Senohrabkova L, et al. New integrative modules for multicolor-protein labeling and live-cell imaging in Saccharomyces cerevisiae. FEMS Yeast Res. 2016;16(3): fow027. doi: 10.1093/FEMSYR/FOW027
  36. Kushnirov VV. Rapid and reliable protein extraction from yeast. Yeast. 2000;16(9):857–860. doi: 10.1002/1097-0061(20000630)16:9<857::AID-YEA561>3.0.CO;2-B
  37. Zhang T, Lei J, Yang H, et al. An improved method for whole protein extraction from yeast Saccharomyces cerevisiae. Yeast. 2011;28(11):795–798. doi: 10.1002/YEA.1905
  38. Kushnirov VV, Alexandrov IM, Mitkevich OV, et al. Purification and analysis of prion and amyloid aggregates. Methods. 2006;39(1):50–55. doi: 10.1016/J.YMETH.2006.04.007
  39. Drozdova PB, Barbitoff YA, Belousov MV, et al. Estimation of amyloid aggregate sizes with semi-denaturing detergent agarose gel electrophoresis and its limitations. Prion. 2020;14(1):118–128.doi: 10.1080/19336896.2020.1751574
  40. Hines JK, Higurashi T, Srinivasan M, Craig EA. Influence of prion variant and yeast strain variation on prion-molecular chaperone requirements. Prion. 2011;5(4):238–244. doi: 10.4161/PRI.17818

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Comparison of Ssa1 production levels in different yeast strains by immunoblotting. pTEF-SSA1 (a) or pTEF-SSA1-21 (b) plasmids were used for transformation. Total protein was visualized using Coomassie R250 membrane staining. log, yeast culture in logarithmic (OD₆₀₀ = 0.7–1.0), stat,in stationary (OD₆₀₀ = 2) growth phase. Anti-His6 and anti-Hsp70 antibodies were used. Strains selected for further analysis are marked with asterisks. The order of the strains in panel A is as follows (from left to right): OT56, 74-D694, P2.1.1-yAO121, yAO121, 2-yAO121, prb1Δ0-P-74-D694,prb1Δ0-2-74-D694, yAO066, prb1Δ-BY4741, BY4742, yAO066 (stat), prb1Δ-BY4741(stat), BY4742(stat). The order of the strains in panel B is as follows (from left to right): OT56, 74-D694, P2.1.1-yAO121, yAO121, 2-yAO121, prb1Δ0-P-74-D694, prb1Δ0-2-74-D694, prb1Δ-BY4741, BY4742, yAO066 (stat), prb1Δ-BY4741(stat), BY4742(stat).

Download (157KB)
3. Fig. 2. Comparison of Ssa1 production levels in the selected strains under different conditions: a, yAO121 and prb1Δ-BY4741 transformants fromfig. 1 were first grown in 30°C to mid-log phase (OD₆₀₀ = 0.4–0.6), and then incubated at the indicated temperatures for 4 hours: b, Strain prb1Δ-BY4741 was transformed with pTEF-SSA1, pTEF-SSA1-21, or pRS316 (e.v., empty vector) plasmids; the selected transformants were grown at SC-Ura (SC)or Min-Ura (Min) media at 30°C to the late-log phase. Two independent transformants are shown in each case. Shown are results of western blot analysis. Total protein was visualized using Coomassie R250 membrane staining.

Download (179KB)
4. Fig. 3. Selection of a medium for the production of Ssa2, Ssa3 and Ssa 4. Strain prb1Δ-BY4741 was transformed with pTEF-His6-SSA2,pTEF-His6-SSA3 and pTEF-His6-SSA4; selected transformants were grown in SC-Ura (SC) or Min-Ura (Min) media at 30°C until OD₆₀₀ = 0.8–1.1,and then subjected to protein extraction and western blotting.

Download (86KB)
5. Fig. 4. The analysis of intracellular distribution of Ssa proteins. OT56 ([PSI⁺]) and 74-D694 ([psi⁻]) strains were transformed with a series of pTEF-His₆-yTagRFP-T-SSA plasmids. The resulting transformants were analyzed using fluorescence microscopy. BF, bright field.

Download (144KB)
6. Fig. 5. Purification of the Ssa1 protein from yeast cell lysates: a, SDS-PAGE of affinity chromatography fractions of yeast lysates producing His₆-Ssa1 under non-denaturing conditions. Shown is Coomassie R250 staining of gels loaded with elution fractions. Fractions that were taken for subsequent concentration and purification by ion exchange chromatography are marked with a line, fractions marked with one and two arrows were used for the immunoblotting; b, Western blot of representative fractions (marked with one and two arrows at the panel A) after affinity purification; c, SDS-PAGE analysis of ion exchange chromatography fractions, stained with Coomassie R250.

Download (179KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».