Search for traces of selection by analyzing homozygous regions in a population of Chinese silk chicken breed
- Authors: Reinbach N.R.1, Dementieva N.V.1
-
Affiliations:
- All-Russian Research Institute of Genetics and Breeding of Farm Animals — a branch of the All-Russian Research Institute of Genetics and Breeding of Farm Animals
- Issue: Vol 22, No 4 (2024)
- Pages: 437-446
- Section: Methodology in ecological genetics
- URL: https://journals.rcsi.science/ecolgenet/article/view/287941
- DOI: https://doi.org/10.17816/ecogen636206
- ID: 287941
Cite item
Abstract
BACKGROUND: In China, the Chinese silkie chicken is designated as a breed of significant conservation priority, employed in both meat and poultry production, as well as in traditional Chinese medicine. The distinctive phenotypic traits, including hookless feathers, polydactyly, black skin, bones, and hyperpigmentation of connective tissue, have garnered the attention of both poultry breeders and scientific researchers, who utilize Chinese silk chickens as a model to investigate the genetic and evolutionary processes underlying genetic diversity.
AIM: Study of selection traces in the genome of the Chinese silk chicken population in Russia.
MATERIALS AND METHODS: For the purposes of this study, biological material was obtained from birds of the Russian population of Chinese silk chickens. Genotyping was conducted using the Illumina Chicken 60K SNP microarray. The analysis of genomic architecture included the study of homozygous regions with a frequency of occurrence above 75%.
RESULTS: The study selected 24 candidate genes associated with plumage development (АLK, EDARADD), the backbone (WDR43, FBXO11), and those affecting body adaptive and immune capacity (EPCAM, PELI3, PLEK, LGALS8, RAB1B, RYR2), on egg (MDH1, SPRED2, MEIS1, ACTN2, PCNX2, BCL2L10, CYP19A1), and on meat (FOXN2, B3GNT2, MDH1, TMOD3, SLC35F3, NTPCR, PPP3R1, TSNAX) performance.
CONCLUSIONS: These findings enhance our comprehension of the impact of selective breeding on the genetic makeup of the Chinese silk breed in Russia and contribute to the preservation of this distinctive breed.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Natalia R. Reinbach
All-Russian Research Institute of Genetics and Breeding of Farm Animals — a branch of the All-Russian Research Institute of Genetics and Breeding of Farm Animals
Author for correspondence.
Email: miss.reynbax@yandex.ru
ORCID iD: 0000-0001-6193-5617
SPIN-code: 1472-1950
Russian Federation, Saint Petersburg
Natalia V. Dementieva
All-Russian Research Institute of Genetics and Breeding of Farm Animals — a branch of the All-Russian Research Institute of Genetics and Breeding of Farm Animals
Email: dementevan@mail.ru
ORCID iD: 0000-0003-0210-9344
SPIN-code: 8768-8906
Russian Federation, Saint Petersburg
References
- Clark WR. The pheasants of the world: Biology and natural history. In: Johnsgard PA, editor. Pheasants of the world: Biology and natural history. Swan Hill Press; 2001. doi: 10.2307/3803290
- Zhao X, Wen J, Zhang X, et al. Significant genomic introgression from grey junglefowl (Gallus sonneratii) to domestic chickens (Gallus gallus domesticus). J Anim Sci Biotechnol. 2024;15(1):45. doi: 10.1186/s40104-024-01006-7
- Huang R, Zhu C, Zhen Y. Genetic diversity, demographic history, and selective signatures of Silkie chicken. BMC Genomi. 2024;25(1):754. doi: 10.1186/s12864-024-10671-x
- Ka-Shu Wong G, Liu B, Wang J, et al. A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature. 2004;432(7018):717–722. doi: 10.1038/nature03156
- Vakhrameev AB, Makarova AV. Exterior evaluation of chickens. Dubrovitsy: Ernsta; 2021. (In Russ.)
- Prakash A, Singh Y, Chatli M, et al. Review of the black meat chicken breeds: Kadaknath, Silkie, and Ayam Cemani. J World’s Poult Sci. 2023;79(4):879–891. doi: 10.1080/00439339.2023.2250322
- Dementieva NV, Shcherbakov YS, Stanishevskaya OI, et al. Large-scale genome-wide SNP analysis reveals the rugged (and ragged) landscape of global ancestry, phylogeny, and demographic history in chicken breeds. Journal of Zhejiang University-SCIENCE B. 2024;25(4):324–340. doi: 10.1631/jzus.B2300443
- Kirin M, McQuillan R, Franklin CS, et al. Genomic runs of homozygosity record population history and consanguinity. PloS One. 2010;5(11):e13996. doi: 10.1371/journal.pone.0013996
- Li J, Lee M, Davis BW, et al. Mutations upstream of the TBX5 and PITX1 transcription factor genes are associated with feathered legs in the domestic chicken. Mol Biol Evol. 2020;37(9):2477–2486. doi: 10.1093/molbev/msaa093
- Dorshorst B, Okimoto R, Ashwell C. Genomic regions associated with dermal hyperpigmentation, polydactyly and other morphological traits in the silkie chicken. J Hered. 2010;101(3):339–350. doi: 10.1093/jhered/esp120
- Feng C, Gao Y, Dorshorst B, et al. A cis-regulatory mutation of PDSS2 causes silky-feather in chickens. PLoS Genet. 2014;10(8): e1004576. doi: 10.1371/journal.pgen.1004576
- He C, Chen Y, Yang K, et al. Genetic pattern and gene localization of polydactyly in Beijing fatty chicken. PLoS One. 2017;12(5):e0176113. doi: 10.1371/journal.pone.0176113
- Cho E, Kim M, Manjula P, et al. A retroviral insertion in the tyrosinase (TYR) gene is associated with the recessive white plumage color in the Yeonsan Ogye chicken. J Anim Sci Biotechnol. 2021;63(4):751–758. doi: 10.5187/jast.2021.e71
- Faraco CD, Vaz SA, Pástor MV, Erickson CA. Hyperpigmentation in the Silkie fowl correlates with abnormal migration of fate-restricted melanoblasts and loss of environmental barrier molecules. Dev Dyn. 2001;220(3):212–225. doi: 10.1002/1097-0177(20010301)220:3<212:: Aid-dvdy1105>3.0.Co;2-9
- Zhu F, Yin Z-T, Zhao Q-S, et al. A chromosome-level genome assembly for the Silkie chicken resolves complete sequences for key chicken metabolic, reproductive, and immunity genes. Commun Biol. 2023;6(1):1233. doi: 10.1038/s42003-023-05619-y
- Tarrant KJ, Lopez R, Loper M, Fulton JE. Assessing MHC-B diversity in Silkie chickens. Poult Sci. 2020;99(5):2337–2341. doi: 10.1016/j.psj.2020.01.005
- Liu J, Zhang T, Fu L, et al. Review of genetic diversity and breed identification of black-bone silky fowl. China Journal of Chinese Materia Medica. 2022;47(8):2021–2027. doi: 10.19540/j.cnki.cjcmm.20220116.101
- Perinek O, Shiryaev G, Ryabova A. The use of peripheral venous catheter in chickens. Legal regulation in veterinary medicine. 2023;(4): 115–118. EDN: TYYANG doi: 10.52419/issn2782-6252.2023.4.115
- Vieceli FM, Bronner ME. Leukocyte receptor tyrosine kinase interacts with secreted midkine to promote survival of migrating neural crest cells. Development. 2018;145(20):dev164046. doi: 10.1242/dev.164046
- Qiu M, Zhang Z, Zhu S, et al. Transcriptome sequencing and mass spectrometry reveal genes involved in the non-mendelian inheritance-mediated feather growth rate in chicken. Biochem Genet. 2024;62:4120–4136. doi: 10.1007/s10528-023-10643-y
- Houghton L, Lindon C, Morgan BA. The ectodysplasin pathway in feather tract development. Development. 2005;132(5):863–872. doi: 10.1242/dev.01651
- Fedorova ES, Dementieva NV, Shcherbakov YS, Stanishevskaya OI. Identification of key candidate genes in runs of homozygosity of the genome of two chicken breeds, associated with cold adaptation. Biology. 2022;11(4):547. doi: 10.3390/biology11040547
- Tan X, Liu L, Dong J, et al. Genome-wide detections for runs of homozygosity and selective signatures reveal novel candidate genes under domestication in chickens. BMC Genom. 2024;25(1):485. doi: 10.1186/s12864-024-10349-4
- Sun L, Li C, Zhao N, et al. Host protein EPCAM interacting with EtMIC8-EGF is essential for attachment and invasion of Eimeria tenella in chickens. Microb Pathog. 2024;188:106549. doi: 10.1016/j.micpath.2024.106549
- Moynagh PN. The roles of Pellino E3 ubiquitin ligases in immunity. Nat Rev Immunol. 2014;14(2):122–131. doi: 10.1038/nri3599
- An J, Chen P, Li X, et al. Identification of potential hub genes and biological mechanism in rheumatoid arthritis and non-small cell lung cancer via integrated bioinformatics analysis. Transl Oncol. 2024;45:101964. doi: 10.1016/j.tranon.2024.101964
- Purić E, Nilsson UJ, Anderluh M. Galectin-8 inhibition and functions in immune response and tumor biology. Med Res Rev. 2024;44(5):2236–2265. doi: 10.1002/med.22041
- Gimenez MC, Frontini-Lopez YR, Pocognoni CA, et al. Rab1b-GBF1-ARF1 secretory pathway axis is required for birnavirus replication. J Virol. 2022;96(4):e02005-21. doi: 10.1128/JVI.02005-21
- Frontini-López YR, Rivera L, Pocognoni CA, et al. Infectious bursal disease virus assembly causes endoplasmic reticulum stress and lipid droplet accumulation. Viruses. 2023;15(6):1295. doi: 10.3390/v15061295
- Hu Z, Cao J, Liu G, et al. Comparative transcriptome profiling of skeletal muscle from black muscovy duck at different growth stages using RNA-seq. Genes. 2020;11(10):1228. doi: 10.3390/genes11101228
- Mulim HA, Hernandez RO, Vanderhout R, et al. Genetic background of walking ability and its relationship with leg defects, mortality, and performance traits in turkeys (Meleagris gallopavo). Poult Sci. 2024;103(7):103779. doi: 10.1016/j.psj.2024.103779
- Rajcan-Separovic E, Harvard C, Liu X, et al. Clinical and molecular cytogenetic characterisation of a newly recognised microdeletion syndrome involving 2p15-16.1. J Med Genet. 2007;44(4):269–276. doi: 10.1136/jmg.2006.045013
- Wu P, Zhou K, Zhang J, et al. Transcriptome integration analysis at different embryonic ages reveals key lncRNAs and mRNAs for chicken skeletal muscle. Front Vet Sci. 2022;9:908255. doi: 10.3389/fvets.2022.908255
- Wang X, Zhang J, Su J, et al. Genome-wide mapping of the binding sites of myocyte enhancer factor 2A in chicken primary myoblasts. Poult Sci. 2024;103(10):104097. doi: 10.1016/j.psj.2024.104097
- Shrestha MM, Lim C-Y, Bi X, et al. Tmod3 phosphorylation mediates AMPK-dependent GLUT4 plasma membrane insertion in myoblasts. Front Endocrinol. 2021;12:653557. doi: 10.3389/fendo.2021.653557
- Yu S, Wang G, Liao J, Tang M. Transcriptome profile analysis identifies candidate genes for the melanin pigmentation of breast muscle in Muchuan black-boned chicken. Poult Sci. 2018;97(10):3446–3455. doi: 10.3382/ps/pey238
- Liu C, Chen Z, Zhang Z, et al. Unveiling the genetic mechanism of meat color in pigs through GWAS, multi-tissue, and single-cell transcriptome signatures exploration. Int J Mol Sci. 2024;25(7):3682. doi: 10.3390/ijms25073682
- Zhang J, Zhuang H, Cao J, et al. Breast meat fatty acid profiling and proteomic analysis of Beijing-You chicken during the laying period. Front Vet Sci. 2022;9:908862. doi: 10.3389/fvets.2022.908862
- Shah TM, Patel NV, Patel AB, et al. A genome-wide approach to screen for genetic variants in broilers (Gallus gallus) with divergent feed conversion ratio. Mol Genet Genom. 2016;291(4):1715–1725. doi: 10.1007/s00438-016-1213-0
- Shen M, Li T, Chen F, et al. Transcriptomic analysis of circRNAs and mRNAs reveals a complex regulatory network that participate in follicular development in chickens. Front Genet. 2020;11:503. doi: 10.3389/fgene.2020.00503
- Liu Z, Sun C, Yan Y, et al. Genome-wide association analysis of age-dependent egg weights in chickens. Front Genet. 2018;9:128. doi: 10.3389/fgene.2018.00128
- Sánchez-Guardado LÓ, Irimia M, Sánchez-Arrones L, et al. Distinct and redundant expression and transcriptional diversity of MEIS gene paralogs during chicken development. Dev Dyn. 2011;240(6):1475–1492. doi: 10.1002/dvdy.22621
- Guo M, Li Y, Chen Y, et al. Genome-wide mapping of estrogen receptor α binding sites by ChIP-seq to identify genes related to sexual maturity in hens. Gene. 2018;642:32–42. doi: 10.1016/j.gene.2017.11.020
- Liu Y, Xin J, Zhang S, et al. Expression patterns and biological function of BCL2L10 during mouse preimplantation development. Gene Expr Patterns. 2022;46:119285. doi: 10.1016/j.gep.2022.119285
- Jeong J-H, Jung Y-K, Kim H-J, et al. The gene for aromatase, a rate-limiting enzyme for local estrogen biosynthesis, is a downstream target gene of Runx2 in skeletal tissues. Mol Cell Biol. 2010;30(10):2365–2375. doi: 10.1128/mcb.00672-09
- Nie R, Tian H, Zhang W, et al. NR5A1 and NR5A2 regulate follicle development in chicken (Gallus gallus) by altering proliferation, apoptosis, and steroid hormone synthesis of granulosa cells. Poult Sci. 2024;103(5):103620. doi: 10.1016/j.psj.2024.103620
- Chen X, Li X, Zhong C, et al. Genetic patterns and genome-wide association analysis of eggshell quality traits of egg-type chicken across an extended laying period. Poult Sci. 2024;103(4):103458. doi: 10.1016/j.psj.2024.103458
- Cogburn LA, Trakooljul N, Chen C, et al. Transcriptional profiling of liver during the critical embryo-to-hatchling transition period in the chicken (Gallus gallus). BMC Genom. 2018;19(1):695. doi: 10.1186/s12864-018-5080-4
- Zhao C, Andreeva V, Gibert Y, et al. Tissue specific roles for the ribosome biogenesis factor Wdr43 in zebrafish development. PLoS Genet. 2014;10(1):e1004074. doi: 10.1371/journal.pgen.1004074
- Qin Y, Yan G, Qiao Y, et al. Identification of hub genes based on integrated analysis of single-cell and microarray transcriptome in patients with pulmonary arterial hypertension. BMC Genom. 2023;24(1):788. doi: 10.1186/s12864-023-09892-3
- Wang X, Kong F, Lin Z. Cromolyn prevents cerebral vasospasm and dementia by targeting WDR43. Front Aging Neurosci. 2023;15:1132733. doi: 10.3389/fnagi.2023.1132733
- Huang H, Lu J, Aukhil I, et al. FBXO11 regulates bone development. Bone. 2023;170:116709. doi: 10.1016/j.bone.2023.116709
Supplementary files
