Dominant bacterial genera of microbiota of chernozems of the forest-steppe zone

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Bacterial community plays a significant role in maintaining homeostasis and fertility of chernozems. Analysis of its components allows us to identify the dominant taxonomic groups, the ecological preferences of the species that form their basis, and helps to focus efforts on creating biological products and tests aimed at monitoring and enhancing fertility.

AIM: The aim of this study is to identify bacterial genera that dominate the microbiota of Chernozems in the forest-steppe zone of the European part of Russia, and to trace the influence of land use, summer season phase, agrochemical parameters and interactions with each other on their abundance.

MATERIALS AND METHODS: In the Belgorod region, 10 samples of arable and non-arable chernozems were taken twice during the summer. Based on metabarcoding data, the percentages of genera in bacterial communities were obtained. An agrochemical analysis was carried out with the calculation of correlation coefficients between the chemical indicators of chernozems and the proportions of bacterial genera. An analysis of correlations between bacterial genera was carried ut as well.

RESULTS: Dominant genera include Sphingomonas, Rubrobacter, Gemmatimonas, Bradyrhizobium, Haliangium and others. Under soil conditions, the proportion of representatives of the genera Sphingomonas and Gemmatimonas shows a strong positive correlation with nitrate nitrogen concentration, and the proportion of the genus Bradyrhizobium shows a strong negative correlation with phosphorus concentration. The largest number of positive correlation interactions with other genera was found for Nocardioides, Mycobacterium, Streptomyces, and Solirubrobacter.

CONCLUSIONS: The stability of the set of bacterial genera dominant in the chernozems of the forest-steppe zone of Russia in different environmental conditions (plowed and unplowed areas), as well as over time (June and August) was shown. A number of representatives belonging to the genera Sphingomonas, Gemmatimonas, Bradyrhizobium and others are strongly dependent on the concentrations of nitrogen and phosphorus fertilizer components. Representatives of actinomycetes and mycobacteria are closely involved in positive correlation interactions among bacterial genera.

About the authors

Wentao Zheng

Belgorod State University

Email: zhengwentaoo@126.com
ORCID iD: 0009-0003-3460-8401
Russian Federation, Belgorod

Konstantin S. Boyarshin

Belgorod State University

Email: ulmus-04@yandex.ru
ORCID iD: 0000-0002-2960-0670
SPIN-code: 6002-9327

Cand. Sci. (Biology)

Russian Federation, Belgorod

Valeria V. Adamova

Belgorod State University

Email: adamova@bsu.edu.ru
ORCID iD: 0000-0001-8329-4670
SPIN-code: 8985-6005

Cand. Sci. (Biology)

Russian Federation, Belgorod

Ekaterina V. Nikitinskaya

Cherepovets State University

Email: nikitinskajacat@yandex.ru
Russian Federation, Cherepovets

Olga Yu. Obukhova

Belgorod State University

Author for correspondence.
Email: 1064261@bsu.edu.ru
ORCID iD: 0009-0007-5139-0394
SPIN-code: 9138-2276
Russian Federation, Belgorod

Marina V. Kolkova

Belgorod State University

Email: mvk3105@mail.ru
ORCID iD: 0009-0008-3849-3564
Russian Federation, Belgorod

Olga S. Bespalova

Belgorod State University

Email: olga9078@mail.ru
Russian Federation, Belgorod

Violetta V. Klyueva

Belgorod State University

Email: klyueva@bsu.edu.ru
ORCID iD: 0000-0002-9509-5115
SPIN-code: 8265-0423
Russian Federation, Belgorod

Kristina A. Degtyareva

Belgorod State University

Email: degtyareva@bsu.edu.ru
ORCID iD: 0000-0003-4474-0919
SPIN-code: 6439-6568
Russian Federation, Belgorod

Lyubov V. Nesteruk

Belgorod State University

Email: nesteruk@bsu.edu.ru
ORCID iD: 0000-0003-3189-8178
SPIN-code: 3616-4039

Cand. Sci. (Biology)

Russian Federation, Belgorod

Yulia N. Kurkina

Belgorod State University

Email: kurkina@bsu.edu.ru
ORCID iD: 0000-0001-9180-1257
SPIN-code: 5292-6973

Cand. Sci. (Biology)

Russian Federation, Belgorod

Olesya A. Makanina

Belgorod State University

Email: makanina@bsu.edu.ru
ORCID iD: 0009-0006-7571-2493
SPIN-code: 9678-8458

Cand. Sci. (Biology)

Russian Federation, Belgorod

Elena S. Ivanova

Cherepovets State University

Email: stepinaelena@yandex.ru
ORCID iD: 0000-0002-6976-1452
SPIN-code: 5997-3738

Cand. Sci. (Biology)

Russian Federation, Cherepovets

Irina V. Batlutskaya

Belgorod State University

Email: bat@bsu.edu.ru
ORCID iD: 0000-0003-0068-6586
SPIN-code: 2555-6176

Dr. Sci. (Biology)

Russian Federation, Belgorod

References

  1. Dokuchaev VV. Russian chernozem. Saint Petersburg: Printing house of Decleron and Evdokimov; 1883. 376 p. (In Russ.)
  2. Liu X, Burras CL, Kravchenko YS, et al. Overview of Mollisols in the world: Distribution, land use and management. Can J Soil Sci. 2012;92(3):383–402. doi: 10.4141/cjss2010-058
  3. Bezuglova OS, Sherstnev AK, Zolotarev AL, et al. Soil-ecological monitoring of ordinary chernozems of the north Priazovye district. Bulletin of higher educational institutions. North Caucasus Region. Natural sciences. 2008;(5):83–89. EDN: JVLKSF
  4. Grebenshchikov VP, Grebenshchikova NV. Regional peculiarities of chernozems of Transdnistria. Priority scientific directions: from theory to practice. 2016;(23):14–19. EDN: TLQIQN (In Russ.)
  5. Shcheglov DI. Chernozems of the Central regions of Russia: the prezent condition and direction of evolution. Proceedings of Voronezh State University. Series: chemistry. Biology. Pharmacy. 2003;(2): 187–195. EDN: OIXYFZ
  6. Sycheva EV, Devyatova TA, Turusov VI, Garmashov VM. Agrochemical properties of ordinary chernozem in the conditions ofadaptive-landscapetechnologies. Proceedings of Voronezh State University. Series: chemistry. Biology. Pharmacy. 2013;(2):149–155. EDN: RELHAZ
  7. Raczka NC, Piñeiro J, Tfaily MM, et al. Interactions between microbial diversity and substrate chemistry determine the fate of carbon in soil. Sci Rep. 2021;11:19320. doi: 10.1038/s41598-021-97942-9
  8. Abs E, Leman H, Ferrière R. A multi-scale eco-evolutionary model of cooperation reveals how microbial adaptation influences soil decomposition. Commun Biol. 2020;3:520. doi: 10.1038/s42003-020-01198-4
  9. de Boer W, Folman LB, Summerbell RC, Boddy L. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev. 2005;29(4):795–811. doi: 10.1016/j.femsre.2004.11.005
  10. Semenov MV, Nikitin D, Stepanov AL, Semenov VM. The structure of bacterial and fungal communities in the rhizosphere and root-free loci of gray forest soil. Eur Soil Sci. 2019;52:319–332. doi: 10.1134/S1064229319010137
  11. Sheudzhen АK, Koltsov SA, Gutorova ОА, et al. Microflora of chernozem leached at long application of fertilizers. International research journal. 2017;(2–2):89–94. EDN: XVLBFX doi: 10.23670/IRJ.2017.56.067
  12. Goldfarb KC, Karaoz U, Hanson CA, et al. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Front Microbiol. 2011;2:94. doi: 10.3389/fmicb.2011.00094
  13. Oates LG, Read HW, Gutknecht JLM, et al. A lipid extraction and analysis method for characterizing soil microbes in experiments with many samples. J Vis Exp. 2017;16(125):55310. doi: 10.3791/55310
  14. Park C, Kim SB, Choi SH, Kim S. Comparison of 16S rRNA gene based microbial profiling using five next-generation sequencers and various primers. Front Microbiol. 2021;12:715500. doi: 10.3389/fmicb.2021.715500
  15. Abraham BS, Caglayan D, Carrillo NV, et al. Shotgun metagenomic analysis of microbial communities from the Loxahatchee nature preserve in the Florida Everglades. Environ Microbiome. 2020;15(1):2. doi: 10.1186/s40793-019-0352-4
  16. Tanabe M, Kanehisa M. Using the KEGG database resource. Curr Protoc Bioinformatics. 2012;43. doi: 10.1002/0471250953.bi0112s38
  17. Fujiyoshi S, Muto-Fujita A, Maruyama F. Evaluation of PCR conditions for characterizing bacterial communities with full-length 16S rRNA genes using a portable nanopore sequencer. Sci Rep. 2020;10:12580. doi: 10.1038/s41598-020-69450-9
  18. Pershina EV, Ivanova EA, Korvigo IO, et al. Investigation of the core microbiome in main soil types from the East European plain. Sci Total Environ. 2018;631–632:1421–1430. doi: 10.1016/j.scitotenv.2018.03.136
  19. Ivanova EA, Pershina EV, Andronov EE, et al. The structure of microbial community in aggregates of a typical chernozem aggregates under contrasting variants of its agricultural use. Eurasian Soil Science. 2015;(11):1367–1382. EDN: UIMGXZ doi: 10.7868/S0032180X15110088
  20. Semenov MV, Chernov TI, Tkhakakhova AK, et al. Distribution of prokaryotic communities throughout the Chernozem profiles under different land uses for over a century. Appl Soil Ecol. 2018;127:8–18. doi: 10.1016/j.apsoil.2018.03.002
  21. Nielsen MN, Winding A. Microorganisms as indicators of soil health. NERI Technical report No. 388. Copenhagen: Grønager’s Grafisk Produktion AS; 2001. 85 p.
  22. Kim H, Park Y-H, Yang JE, et al. Analysis of major bacteria and diversity of surface soil to discover biomarkers related to soil health. Toxics. 2022;10(3):117. doi: 10.3390/toxics10030117
  23. Schloter M, Nannipieri P, Sørensen SJ, van Elsas JD. Microbial indicators for soil quality. Biol Fertil Soils. 2018;54:1–10. doi: 10.1007/s00374-017-1248-3
  24. Willms IM, Rudolph AY, Göschel I, et al. Globally abundant “Candidatus Udaeobacter” benefits from release of antibiotics in soil and potentially performs trace gas scavenging. mSphere. 2020;5(4):00186–20. doi: 10.1128/msphere.00186-20
  25. Tang J, Su L, Fang Y, et al. Moderate nitrogen reduction increases nitrogen use efficiency and positively affects microbial communities in agricultural soils. Agriculture. 2023;13(4):796. doi: 10.3390/agriculture13040796
  26. Boyarshin KS, Adamova VV, Zheng W, et al. Dominant bacterial taxa in chernozems and factors affecting their abundance in the bacterial community. Eurasian Soil Science. 2024;57(6):1007–1017. doi: 10.1134/S106422932460026X
  27. Boyarshin KS, Adamova VV, Wentao Z, Obuhova OY. The effect of long-term agricultural use on the bacterial microbiota of chernozems of the forest-steppe zone. Diversity. 2023;15(2):191. doi: 10.3390/d15020191
  28. IUSS Working Group WRB. World reference base for soil resources. International soil classification system for naming soils and creating legends for soil maps. 4th edit. Vienna: International Union of Soil Sciences (IUSS); 2022. 236 p.
  29. Derzhavin LM, Samokhvalov SG, Sokolova NV, et al. Soils. Determination of salt extract pH, exchangeable acidity, exchangeable cations, nitrate content, exchangeable ammonium and mobile sulfur by CINAO methods. GOST 26483–85 — GOST 26490–85 / State Standards of the USSR. Moscow: USSR State Committee for Standards; Standards Publishing House; 1985. 6 p. (In Russ.)
  30. Nakhimova LI, editor. Soils. Methods for determination of organic matter. GOST 26213–2021. Moscow: Russian Institute of Standardization; 2021. 8 p. (In Russ.)
  31. Derzhavin LM, Samokhvalov SG, Sokolova NV, et al. Soils. Determination of mobile phosphorus and potassium compounds by the Chirikov method modified by CINAO. GOST 26204–91. State Standard of the Union of Soviet Socialist Republics. Moscow: Committee for Standardization and Metrology of the USSR; 1991. 5 p. (In Russ.)
  32. Derzhavin LM, Samokhvalov SG, Sokolova NV, et al. Soils. Determination of nitrates by ionometric method. GOST 26951–86. State standard of the Union of Soviet Socialist Republics. Moscow: USSR State Committee for Standards; Publishing house of standards; 1986. 10 p. (In Russ.)
  33. Spearman C. The proof and measurement of association between two things. Am J Psychol. 1904;15(1):72–101. doi: 10.2307/1412159
  34. Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952;47(260):583–621. doi: 10.2307/2280779
  35. Boyarshin KS, Adamova VV, Zheng W, et al. Bacterial genera associated with nitrogen cycle in microbial communities of chernozems. Ecological genetics. 2024;22(2):191–204. EDN: EPIFNU doi: 10.17816/ecogen603873
  36. Zotov VS, Punina NV, Khapchaeva SA, et al. The new taxonomic marker of nodulation bacteria of Rhizobium genus and its evolution. Ecological genetics. 2012;10(2):50–63. EDN: PFFISD doi: 10.17816/ecogen10250-63
  37. Krutilo D.V., Zotov V.S. Genotypic analysis of nodule bacteria nodulating soybean in soils of Ukraine. Ecological genetics. 2013:11(4):86–95.
  38. Yenkina OV, Korobskoy NF. Microbiological aspects of fertility preservation of Kuban chernozems. Krasnodar: Agroprompolygraphizdat; 1999. 150 p. (In Russ.)
  39. Protsenko EP, Karaulova LN, Protsenko AA, et al. Comparative characteristic of black soils microbiota in commandment and anthropogenic regenerate associations. Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2011;13(1–5):1215–1218. EDN: OORZOP
  40. Gorbacheva MA, Melnikova NV, Chechetkin VR, et al. DNA sequencing and metagenomics of cultivated and uncultivated chernozems in Russia. Geoderma Reg. 2018;14:e00180. doi: 10.1016/j.geodrs.2018.e00180
  41. Melnichuk TN, Egovtseva AYu, Abdurashitov SF, et al. Associative to Triticum aestivum L. Bacteria from chernozems southern and ordinary. Taurida herald of the agrarian sciences. 2018;(4):88–101. EDN: YPPSGT doi: 10.25637/TVAN2018.04.09
  42. Mehmood MA, Fu Y, Zhao H, et al. Enrichment of bacteria involved in the nitrogen cycle and plant growth promotion in soil by sclerotia of rice sheath blight fungus. Stress Biol. 2022;2:32. doi: 10.1007/s44154-022-00049-y
  43. Erikson D. Differentiation of the vegetative and sporogenous phases of the actinomycetes. J Gen Microbiol. 1947;1(1):45–54. doi: 10.1099/00221287-1-1-45
  44. da Cruz Silva G, Kitano IT, de Figueiredo Ribeiro IA, Lacava PT. The potential use of actinomycetes as microbial inoculants and biopesticides in agriculture. Front Soil Sci. 2022;2:833181. doi: 10.3389/fsoil.2022.833181
  45. Ma Y, Wang J, Liu Y, et al. Nocardioides: “Specialists” for hard-to-degrade pollutants in the environment. Molecules. 2023;28(21):7433. doi: 10.3390/molecules28217433

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 4. The scheme of correlations between the proportions of bacterial genera in the microbiota of chernozems. Statistically significant correlations with the Spearman coefficient modulus greater than 0.5 are shown. Positive values correspond to the colors of the arrows in shades of red and pink, negative values correspond to shades of blue. Pink and light blue indicate correlations explained by common correlations of the proportions of genera with the chemical parameters of soil (Fig. 3, Supplement 4), red and blue — not explained by them. The size of the alphabetic characters is proportional to the proportion (abundance) of the corresponding bacterial genus

Download (181KB)
3. Fig. 5. The scheme of correlations between the proportions of bacterial genera in the microbiota of chernozems. Statistically significant correlations are shown, which are not explained from common reliable correlations of the proportions of genera with the chemical parameters of soil. Positive values correspond to the colors of the arrows in shades of red and pink, negative values correspond to shades of blue. Pink and blue indicate correlations that might be explained by statistically insignificant common trends towards correlation with chemical parameters (Fig. 3, Supplement 4), red and dark blue — not explained by them. The names of the genera are shown in Fig. 4

Download (252KB)
4. suppl. 1 Place and time of sampling and quantity of samples of arable and non-arable chernozems
Download (1MB)
5. suppl. 2 Statistics on the classification of sequences obtained by sequencing amplicons of a fragment of the 16S rRNA gene
Download (1MB)
6. suppl. 3 Average percentages of bacterial genera in the community in arable and non-arable chernozems with standard deviations
Download (1MB)
7. suppl. 4 Correlation coefficients of the percentages of genera in bacterial communities of chernozem with chemical parameters of the soil, p ≤ 0.05
Download (1MB)
8. suppl. 5 Correlation coefficients of the percentages of 30 bacterial genera in chernozem communities with each other
Download (82KB)
9. Fig. 1. Places where soil samples were collected on the territory of the Belgorod region of Russia. Pentagons correspond to Haplic Chernozem, rhombuses mean Luvic Chernozem, triangles are for southern variety of Haplic Chernozem (Ordinary Chernozem). An asterisk marks Haplic Chernozem on the border of the protected area

Download (40KB)
10. Fig. 2. The effect of the month of sample collection and agricultural processing on the proportion of genera in the soil bacterial community. The colors indicate how many times the value deviates from the average for a given genus. Statistically significant excess depending on the month (И — June, A — August) and agricultural processing (П — arable areas, Н. п. — non-arable) are marked with letter designations. Numerical data are given in Supplement 3 (doi: 10.17816/ecogen634581-4318801)

Download (178KB)
11. Fig. 3. A heat map of the values of the correlation coefficient of the percentages of the 30 most numerous bacterial genera in the communities of chernozems with the chemical parameters of the soil, as well as with each other. Humidity is indicated as ωH2O, the mass fraction of organic matter as ωорг. Data on the statistical reliability of the obtained values are given in Supplements 4 and 5 (doi: 10.17816/ecogen634581-4318802, doi: 10.17816/ecogen634581-4318803)

Download (452KB)

Copyright (c) 2024 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».