Telomere length in trophectoderm and inner cell mass of human blastocysts: comparative analysis and assessment of influencing factors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: The study of telomere length and influencing factors in early human development has both fundamental and applied importance.

AIM: A comparative assessment of telomere length in the compartments of human blastocysts, and the analysis of the telomere length association with the quality of blastocysts, genetic imbalance and the maternal age.

MATERIALS AND METHODS: The study was performed on trophectoderm and inner cell mass samples of 41 human blastocysts, 26 of which were genetically imbalanced according to preimplantation genetic testing and verification of its results. The microscope slides were prepared for further telomere detection in interphase nuclei by quantitative fluorescence in situ hybridization (Q-FISH).

RESULTS: Telomeres in trophectoderm were longer than in inner cell mass, with their length varied from blastocyst to blastocyst. Telomere length in either trophectoderm or inner cell mass did not differ between genetically balanced and imbalanced blastocysts. There was a tendency towards a decrease in telomere length in the blastocyst compartments with increasing maternal age, however, a statistically significant correlation was not confirmed. The telomere length in the inner cell mass, but not in the trophectoderm, was associated with blasocysts’ quality based on the Gardner grade: medium quality blastocysts had longer telomeres than high quality blastocysts.

CONCLUSIONS: Long telomeres in trophectoderm may be necessary for implantation and subsequent placentation. Telomere length can be considered among modifiers of the effects of karyotype abnormalities and other negative factors: the inheritance by an embryo of long telomeres apparently gives it a developmental advantage even when genetically imbalanced or has poor morphology. Implantation seems to be an important checkpoint for negative selection of embryos with “unsuccessful” combinations of telomere length, karyotype, and morphology.

About the authors

Andrey V. Tikhonov

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology

Author for correspondence.
Email: tixonov5790@gmail.com
ORCID iD: 0000-0002-2557-6642
SPIN-code: 3170-2629

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Olga A. Efimova

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology

Email: efimova_o82@mail.ru
ORCID iD: 0000-0003-4495-0983
SPIN-code: 6959-5014

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Mikhail I. Krapivin

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology

Email: krapivin-mihail@mail.ru
ORCID iD: 0000-0002-1693-5973
SPIN-code: 4989-1932
Russian Federation, Saint Petersburg

Olga V. Malysheva

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology

Email: omal99@mail.ru
ORCID iD: 0000-0002-8626-5071
SPIN-code: 1740-2691

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Evgenia M. Komarova

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology

Email: evgmkomarova@gmail.com
ORCID iD: 0000-0002-9988-9879
SPIN-code: 1056-7821

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Arina V. Golubeva

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology

Email: AlikovaAV1504@yandex.ru
ORCID iD: 0000-0003-1613-222X
SPIN-code: 4610-3686
Russian Federation, Saint Petersburg

Anna A. Pendina

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology

Email: pendina@mail.ru
ORCID iD: 0000-0001-9182-9188
SPIN-code: 3123-2133

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

References

  1. Schoeftner S, Blasco MA. Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol. 2008;10(2):228–236. doi: 10.1038/ncb1685
  2. Schmutz I, de Lange T. Shelterin. Curr Biol. 2016;26(10): R397–R399. doi: 10.1016/j.cub.2016.01.056
  3. Smith EM, Pendlebury DF, Nandakumar J. Structural biology of telomeres and telomerase. Cell Mol Life Sci. 2020;77(1):61–79. doi: 10.1007/s00018-019-03369-x
  4. Olovnikov AM. A theory of marginotomy: the incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol. 1973;41(1): 181–190. doi: 10.1016/0022-5193(73)90198-7
  5. Barnes RP, Fouquerel E, Opresko PL. The impact of oxidative DNA damage and stress on telomere homeostasis. Mech Ageing Dev. 2019;177:37–45. doi: 10.1016/j.mad.2018.03.013
  6. Lustig A, Shterev I, Geyer S, et al. Long term effects of radiation exposure on telomere lengths of leukocytes and its associated biomarkers among atomic-bomb survivors. Oncotarget. 2016;7(26):38988–38998. doi: 10.18632/oncotarget.8801
  7. de Souza MR, Kahl VFS, Rohr P, et al. Shorter telomere length and DNA hypermethylation in peripheral blood cells of coal workers. Mutat Res Genet Toxicol Environ Mutagen. 2018;836(B):36–41. doi: 10.1016/j.mrgentox.2018.03.009
  8. Cesare AJ, Hayashi MT, Crabbe L, Karlseder J. The telomere deprotection response is functionally distinct from the genomic DNA damage response. Mol Cell. 2013;51(2):141–155. doi: 10.1016/j.molcel.2013.06.006
  9. Cohen SB, Graham ME, Lovrecz GO, et al. Protein composition of catalytically active human telomerase from immortal cells. Science. 2007;315(5820):1850–1853. doi: 10.1126/science.1138596
  10. Dunham MA, Neumann AA, Fasching CL, Reddel RR. Telomere maintenance by recombination in human cells. Nat Genet. 2000;26(4):447–450. doi: 10.1038/82586
  11. Heidinger BJ, Blount JD, Boner W, et al. Telomere length in early life predicts lifespan. PNAS USA. 2012;109(5):1743–1748. doi: 10.1073/pnas.1113306109
  12. Ye Q, Apsley AT, Etzel L, et al. Telomere length and chronological age across the human lifespan: A systematic review and meta-analysis of 414 study samples including 743,019 individuals. Ageing Res Rev. 2023;90:102031. doi: 10.1016/j.arr.2023.102031
  13. Bau D-T, Lippman SM, Xu E, et al. Short telomere lengths in peripheral blood leukocytes are associated with an increased risk of oral premalignant lesion and oral squamous cell carcinoma. Cancer. 2013;119(24):4277–4283. doi: 10.1002/cncr.28367
  14. Jang JS, Choi YY, Lee WK, et al. Telomere length and the risk of lung cancer. Cancer Sci. 2008;99(7):1385–1389. doi: 10.1111/j.1349-7006.2008.00831.x
  15. Qin Q, Sun J, Yin J, et al. Telomere length in peripheral blood leukocytes is associated with risk of colorectal cancer in Chinese population. PLoS One. 2014;9(2):e88135. doi: 10.1371/journal.pone.0088135
  16. Berneau SC, Shackleton J, Nevin C, et al. Associations of sperm telomere length with semen parameters, clinical outcomes and lifestyle factors in human normozoospermic samples. Andrology. 2020;8(3):583–593. doi: 10.1111/andr.12734
  17. Hanson BM, Tao X, Zhan Y, et al. Shorter telomere length of white blood cells is associated with higher rates of aneuploidy among infertile women undergoing in vitro fertilization. Fertil Steril. 2021;115(4):957–965. doi: 10.1016/j.fertnstert.2020.09.164
  18. Shilenkova YV, Pendina AA, Fedorova EM, et al. Issues in reproductive health in chromosome translocation carriers. Journal of obstetrics and women’s diseases. 2022;71(5):85–96. EDN: YOTDWW doi: 10.17816/JOWD109329
  19. ESHRE Guideline Group on Good Practice in IVF Labs, De los Santos MJ, Apter S, et al. Revised guidelines for good practice in IVF laboratories (2015). Hum Reprod. 2016;31(4):685–686. doi: 10.1093/humrep/dew016
  20. Pendina AA, Krapivin MI., Efimova OA, et al. Telomere length in metaphase chromosomes of human triploid zygotes. Int J Mol Sci. 2021;22(11):5579. doi: 10.3390/ijms22115579
  21. Gardner DK, Schoolcraft WB. In vitro culture of human blastocysts. In: Jansen R, Mortimer D, editors. Towards reproductive certainty: Fertility and genetics beyond. Camforth, UK: Parthenon Publishing; 1999. P. 378–388.
  22. Pendina AA, Efimova OA, Fedorova ID, et al. DNA methylation patterns of metaphase chromosomes in human preimplantation embryos. Cytogenet Genome Res. 2011;132(1–2):1–7. doi: 10.1159/000318673
  23. Efimova OA, Pendina AA, Tikhonov AV, et al. Chromosome hydroxymethylation patterns in human zygotes and cleavage-stage embryos. Reproduction. 2015;149(3):223–33. doi: 10.1530/REP-14-0343
  24. Tikhonov AV, Krapivin MI, Malysheva OV, et al. Re-Examination of PGT-A detected genetic pathology in compartments of human blastocysts: A series of 23 cases. J Clin Med. 2024;13(11):3289. doi: 10.3390/jcm13113289
  25. Efimova OA, Pendina AA, Tikhonov AV, et al. Genome-wide 5-hydroxymethylcytosine patterns in human spermatogenesis are associated with semen quality. Oncotarget. 2017;8(51):88294–88307. doi: 10.18632/oncotarget.18331
  26. Liehr T, Weise A. Background. In: Liehr T, editor. Fluorescence in situ hybridization (FISH). Springer, Berlin, Heidelberg; 2017. P. 337–346. doi: 10.1007/978-3-662-52959-1_1
  27. Canela A, Vera E, Klatt P, Blasco MA. High-throughput telomere length quantification by FISH and its application to human population studies. PNAS USA. 2007;104(13):5300–5305. doi: 10.1073/pnas.0609367104
  28. Ourliac-Garnier I, Londoño-Vallejo A. Telomere length analysis by quantitative fluorescent in situ hybridization (Q-FISH). In: Songyang Z, editor. Telomeres and telomerase. Methods in molecular biology. Vol. 1587. New York: Humana Press; 2017. P. 29–39. doi: 10.1007/978-1-4939-6892-3_3
  29. Iqbal K, Kues WA, Baulain U, et al. Species-specific telomere length differences between blastocyst cell compartments and ectopic telomere extension in early bovine embryos by human telomerase reverse transcriptase. Biol Reprod. 2011;84(4):723–733 doi: 10.1095/biolreprod.110.087205
  30. Varela E, Schneider RP, Ortega S, Blasco MA. Different telomere-length dynamics at the inner cell mass versus established embryonic stem (ES) cells. PNAS USA. 2011;108(37):15207–15212. doi: 10.1073/pnas.1105414108
  31. Kar M, Ghosh D, Sengupta J. Histochemical and morphological examination of proliferation and apoptosis in human first trimester villous trophoblast. Hum Reprod. 2007;22(11):2814–2823. doi: 10.1093/humrep/dem284
  32. Liu L, Bailey S, Okuka M, et al. Telomere lengthening early in development. Nat Cell Biol. 2007;9:1436–1441. doi: 10.1038/ncb1664
  33. Wright DL, Jones EL, Mayer JF, et al. Characterization of telomerase activity in the human oocyte and preimplantation embryo. Mol Hum Reprod. 2001;7(10):947–955. doi: 10.1093/molehr/7.10.947
  34. Polettini J, da Silva MG. Telomere-Related disorders in fetal membranes associated with birth and adverse pregnancy outcomes. Front Physiol. 2020;11:561771. doi: 10.3389/fphys.2020.561771
  35. Kyo S, Takakura M, Tanaka M, et al. Expression of telomerase activity in human chorion. Biochem Biophys Res Commun. 1997;241(2):498–503. doi: 10.1006/bbrc.1997.7767
  36. Chen RJ, Chu CT, Huang SC, et al. Telomerase activity in gestational trophoblastic disease and placental tissue from early and late human pregnancies. Hum Reprod. 2002;17(2):463–468. doi: 10.1093/humrep/17.2.463
  37. Colatto BN, de Souza IF, Schinke LAA, et al. Telomere length and telomerase activity in foetal membranes from term and spontaneous preterm births. Reprod Sci. 2020;27(1):411–417. doi: 10.1007/s43032-019-00054-z
  38. Nishi H, Yahata N, Ohyashiki K, et al. Comparison of telomerase activity in normal chorionic villi to trophoblastic diseases. Int J Oncol. 1998;12(1):81–85. doi: 10.3892/ijo.12.1.81
  39. Treff NR, Su J, Taylor D, Scott RT Jr. Telomere DNA deficiency is associated with development of human embryonic aneuploidy. PLoS Genet. 2011;7(6):e1002161. doi: 10.1371/journal.pgen.1002161
  40. Mania A, Mantzouratou A, Delhanty JDA, et al. Telomere length in human blastocysts. Reprod Biomed Online. 2014;28(5):624–637. doi: 10.1016/j.rbmo.2013.12.010
  41. Wang F, McCulloh DH, Chan K, et al. The landscape of telomere length and telomerase in human embryos at blastocyst stage. Genes (Basel). 2023;14(6):1200. doi: 10.3390/genes14061200
  42. Turner K, Lynch C, Rouse H, et al. Direct single-cell analysis of human polar bodies and cleavage-stage embryos reveals no evidence of the telomere theory of reproductive ageing in relation to aneuploidy generation. Cells. 2019;8(2):163. doi: 10.3390/cells8020163
  43. Keefe DL. Telomeres and genomic instability during early development. Eur J Med Genet. 2020;63(2):103638. doi: 10.1016/j.ejmg.2019.03.002
  44. Anifandis G, Samara M, Simopoulou M, et al. Insights into the role of telomeres in human embryological parameters. Opinions regarding IVF. J Dev Biol. 2021;9(4):49. doi: 10.3390/jdb9040049
  45. Epel ES. Can childhood adversity affect telomeres of the next generation? Possible mechanisms, implications, and next-generation research. Am J Psychiatry. 2020;177(1):7–9. doi: 10.1176/appi.ajp.2019.19111161
  46. Turner S, Wong HP, Rai J, Hartshorne GM. Telomere lengths in human oocytes, cleavage stage embryos and blastocysts. Mol Hum Reprod. 2010;16(9):685–694. doi: 10.1093/molehr/gaq048
  47. Krapivin MI., Tikhonov AV, Efimova OA, et al. Telomere length in chromosomally normal and abnormal miscarriages and ongoing pregnancies and its association with 5-hydroxymethylcytosine patterns. Int J Mol Sci. 2021;22(12):6622. doi: 10.3390/ijms22126622
  48. Huleyuk N, Tkach I, Zastavna D, Tyrka M. Can telomere shortening be the main indicator of non-viable fetus elimination? Mol Cytogenet. 2018;11:11. doi: 10.1186/s13039-018-0361-9
  49. Vaziri H, Schächter F, Uchida I, et al. Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am J Hum Genet. 1993;52(4):661–667.
  50. Bhaumik P, Bhattacharya M, Ghosh P, et al. Telomere length analysis in Down syndrome birth. Mech Ageing Dev. 2017;164:20–26. doi: 10.1016/j.mad.2017.03.006
  51. Spivak I, Tkachuk N, Zhekalov A, Dolinina T. Role of genotype in maintaining telomere length at prolonged psychological stress. In: Chernyavskaya V, Kuße H, editors. Professional сulture of the specialist of the future, vol. 51. European proceedings of social and behavioural sciences. Future Academy; 2018. P. 515–527. doi: 10.15405/epsbs.2018.12.02.56
  52. Garrett-Bakelman FE, Darshi M, Green SJ, et al. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science. 2019;364(6436):eaau8650. doi: 10.1126/science.aau8650

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Interphase nuclei from trophectoderm (а) and inner cell mass (b) of a human blastocyst after telomere detection by Q-FISH using telomeric DNA probes (yellow) and staining with DAPI (blue)

Download (54KB)
3. Fig. 2. Mean relative telomere lengths in trophectoderm and inner cell mass of 41 human blastocysts

Download (76KB)
4. Fig. 3. The scatter plots of the mean relative telomere lengths in trophectoderm (ТЭ) (a) and in inner cell mass (ВКМ) (b) and maternal age. The Spearman test showed no significant correlations (ρ = –0.1118, p = 0.4866 for TE and ρ = –0.2768, p = 0.0798 for ICM)

Download (46KB)
5. Fig. 4. The comparisons of mean relative telomere lengths between blastocysts of high and medium quality. Telomere lengths do not differ between trophectoderms (a). Telomeres in inner cell mass (b) are longer in medium quality blastocysts compared to telomeres of high quality blastocysts

Download (65KB)

Copyright (c) 2024 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».