Роль транспортирующих воду аквапоринов подсемейств PIP и TIP в онтогенезе растений и адаптации к стрессовым факторам
- Авторы: Данелия Г.В.1, Емельянов В.В.1, Шишова М.Ф.1
-
Учреждения:
- Санкт-Петербургский государственный университет
- Выпуск: Том 22, № 4 (2024)
- Страницы: 343-368
- Раздел: Генетические основы эволюции экосистем
- URL: https://journals.rcsi.science/ecolgenet/article/view/287935
- DOI: https://doi.org/10.17816/ecogen637037
- ID: 287935
Цитировать
Аннотация
В обзоре приведен анализ современных представлений о многообразии аквапоринов у покрытосеменных растений. Рассмотрено их строение, кодирование и разнообразие путей регуляции. Особое внимание уделено аквапоринам, ответственным за транспорт воды. Приведены данные об участии различных изоформ аквапоринов в адаптации растений к абиотическим факторам, вызывающим гидратацию и дегидратацию. Достаточно подробно рассмотрены данные об участии аквапоринов в процессах роста и развития растений от прорастания до формирования семян. Представленные в обзоре данные указывают на основные направления исследований по расшифровке механизмов регуляции работы аквапоринов, основная функция которых заключается в трансмембранном переносе воды. Отмечено особое значение уже начатых исследований на системном транскриптомном и протеомном уровнях. Они позволят выявить специфичность изоформ аквапоринов, участвующих в развитии адаптационного ответа или на различных этапах развития растений.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Георгий Вадимович Данелия
Санкт-Петербургский государственный университет
Email: georgdanelia@gmail.com
ORCID iD: 0009-0005-9330-4840
Россия, Санкт-Петербург
Владислав Владимирович Емельянов
Санкт-Петербургский государственный университет
Email: bootika@mail.ru
ORCID iD: 0000-0003-2323-5235
SPIN-код: 9460-1278
канд. биол. наук, доцент
Россия, Санкт-ПетербургМария Фёдоровна Шишова
Санкт-Петербургский государственный университет
Автор, ответственный за переписку.
Email: mshishova@mail.ru
ORCID iD: 0000-0003-3657-2986
SPIN-код: 7842-7611
д-р биол. наук, профессор
Россия, Санкт-ПетербургСписок литературы
- Krylov A.V., Pohl P., Zeidel M.L., Hill W.G. Water permeability of asymmetric planar lipid bilayers: leaflets of different composition offer independent and additive resistances to permeation // J Gen Physiol. 2001. Vol. 118, N 4. P. 333–340. doi: 10.1085/jgp.118.4.333
- Mathai J.C., Tristram-Nagle S., Nagle J.F., Zeidel M.L. Structural determinants of water permeability through the lipid membrane // J Gen Physiol. 2008. Vol. 131, N 1. P. 69–76. doi: 10.1085/jgp.200709848
- Shinoda W. Permeability across lipid membranes // Biochim Biophys Acta Biomembr. 2016. Vol. 1858, N 10. P. 2254–2265. doi: 10.1016/j.bbamem.2016.03.032
- Kapilan R., Vaziri M., Zwiazek J.J. Regulation of aquaporins in plants under stress // Biol Res. 2018. Vol. 51, N 1. ID 4. doi: 10.1186/s40659-018-0152-0
- Inden T., Hoshino A., Otagaki S., et al. Genome-wide analysis of aquaporins in Japanese Morning Glory (Ipomoea nil) // Plants. 2023. Vol. 12, N 7. ID 1511. doi: 10.3390/plants12071511
- Afzal Z., Howton T.C., Sun Y., Mukhtar M.S. The roles of aquaporins in plant stress responses // J Dev Biol. 2016. Vol. 4, N 1. ID 9. doi: 10.3390/jdb4010009
- Singh S., Bhatt V., Kumar V., et al. Evolutionary understanding of aquaporin transport system in the basal eudicot model species Aquilegia coerulea // Plants. 2020. Vol. 9, N 6. ID 799. doi: 10.3390/plants9060799
- Wood T.E., Takebayashi N., Barker M.S., et al. The frequency of polyploid speciation in vascular plants // PNAS USA. 2009. Vol. 106, N 33. P. 13875–13879. doi: 10.1073/pnas.0811575106
- Stuessy T., Weiss-Schneeweiss H. What drives polyploidization in plants? // New Phytol. 2019. Vol. 223, N 4. P. 1690–1692. doi: 10.1111/nph.15929
- Groszmann M., Osborn H.L., Evans J.R. Carbon dioxide and water transport through plant aquaporins // Plant Cell Environ. 2017. Vol. 40, N 6. P. 938–961. doi: 10.1111/pce.12844
- Sonah H., Deshmukh R.K., Labbé C., Bélanger R.R. Analysis of aquaporins in Brassicaceae species reveals high-level of conservation and dynamic role against biotic and abiotic stress in canola // Sci Rep. 2017. Vol. 7, N 1. ID 2771. doi: 10.1038/s41598-017-02877-9
- Su Y., Liu Z., Sun J., et al. Genome-wide identification of maize aquaporin and functional analysis during seed germination and seedling establishment // Front Plant Sci. 2022. Vol. 13. ID 831916. doi: 10.3389/fpls.2022.831916
- Obroucheva N.V., Sin’kevich I.A. Aquaporins and cell growth // Russ J Plant Physiol. 2010. Vol. 57, N 2. P. 153–165. doi: 10.1134/S1021443710020019
- Maurel C., Boursiac Y., Luu D.-T., et al. Aquaporins in plants // Physiol Rev. 2015. Vol. 95, N 4. P. 1321–1358. doi: 10.1152/physrev.00008.2015
- Plant aquaporins: From transport to signaling / F. Chaumont, S.D. Tyerman, editors. New York: Springer, 2017. 353 p. doi: 10.1007/978-3-319-49395-4
- Wang Y., Zhao Z., Liu F., et al. Versatile roles of aquaporins in plant growth and development // Int J Mol Sci. 2020. Vol. 21, N 24. ID 9485. doi: 10.3390/ijms21249485
- Koefoed-Johnsen V., Ussing H.H. The contributions of diffusion and flow to the passage of D2O through living membranes: Effect of neurohypophyseal hormone on isolated anuran skin // Acta Physiol Scand. 1953. Vol. 28, N 1. P. 60–76. doi: 10.1111/j.1748-1716.1953.tb00959.x
- Macey R.L., Farmer R.E.L. Inhibition of water and solute permeability in human red cells // Biochim Biophys Acta Biomembr. 1970. Vol. 211, N 1. P. 104–106. doi: 10.1016/0005-2736(70)90130-6
- Denker B.M., Smith B.L., Kuhajda F.P., Agre P. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules // J Biol Chem. 1988. Vol. 263, N 30. P. 15634–15642. doi: 10.1016/s0021-9258(19)37635-5
- Preston G.M., Carroll T.P., Guggino W.B., Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein // Science. 1992. Vol. 256, N 5055. P. 385–387. doi: 10.1126/science.256.5055.385
- Fushimi K., Uchida S., Harat Y., et al. Cloning and expression of apical membrane water channel of rat kidney collecting tubule // Nature. 1993. Vol. 361, N 6412. P. 549–552. doi: 10.1038/361549a0
- Fortin M.G., Morrison N.A., Verma D.P.S. Nodulin-26, a peribacteroid membrane nodulin is expressed independently of the development of the peribacteroid compartment // Nucleic Acids Res. 1987. Vol. 15, N 2. P. 813–824. doi: 10.1093/nar/15.2.813
- Hussain A., Tanveer R., Mustafa G., et al. Comparative phylogenetic analysis of aquaporins provides insight into the gene family expansion and evolution in plants and their role in drought tolerant and susceptible chickpea cultivars // Genomics. 2020. Vol. 112, N 1. P. 263–275. doi: 10.1016/j.ygeno.2019.02.005
- Rabeh K., Sallami A., Gaboun F., et al. Genome-wide analysis of aquaporin and their responses to abiotic stresses in plants: A systematic review and meta-analysis // Plant Stress. 2024. Vol. 11. ID 100362. doi: 10.1016/j.stress.2024.100362
- Lopez-Zaplana A., Nicolas-Espinosa J., Carvajal M., Bárzana G. Genome-wide analysis of the aquaporin genes in melon (Cucumis melo L.) // Sci Rep. 2020. Vol. 10, N 1. ID 22240. doi: 10.1038/s41598-020-79250-w
- Møller I.M., Rao R.S.P., Jiang Y., et al. Proteomic and bioinformatic profiling of transporters in higher plant mitochondria // Biomolecules. 2020. Vol. 10, N 8. ID 1190. doi: 10.3390/biom10081190
- Kudoyarova G., Veselov D., Yemelyanov V., Shishova M. The role of aquaporins in plant growth under conditions of oxygen deficiency // Int J Mol Sci. 2022. Vol. 23, N 17. ID 10159. doi: 10.3390/ijms231710159
- Lopez-Zaplana A., Bárzana G., Ding L., et al. Aquaporins involvement in the regulation of melon (Cucumis melo L.) fruit cracking under different nutrient (Ca, B and Zn) treatments // Environ Exp Bot. 2022. Vol. 201. ID 104981. doi: 10.1016/j.envexpbot.2022.104981
- Ishikawa F., Suga S., Uemura T., et al. Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana // FEBS Lett. 2005. Vol. 579, N 25. P. 5814–5820. doi: 10.1016/j.febslet.2005.09.076
- Lopez D., Bronner G., Brunel N., et al. Insights into Populus XIP aquaporins: evolutionary expansion, protein functionality, and environmental regulation // J Exp Bot. 2012. Vol. 63, N 5. P. 2217–2230. doi: 10.1093/jxb/err404
- Luang S., Hrmova M. Structural basis of the permeation function of plant aquaporins. В кн.: Plant aquaporins: From transport to signaling / F. Chaumont, S.D. Tyerman, editors. New York: Springer, 2017. P. 1–28. doi: 10.1007/978-3-319-49395-4_1
- Noronha H., Agasse A., Martins A.P., et al. The grape aquaporin VvSIP1 transports water across the ER membrane // J Exp Bot. 2014. Vol. 65, N 4. P. 981–993. doi: 10.1093/jxb/ert448
- Shivaraj S.M., Deshmukh R., Sonah H., Bélanger R.R. Identification and characterization of aquaporin genes in Arachis duranensis and Arachis ipaensis genomes, the diploid progenitors of peanut // BMC Genom. 2019. Vol. 20. ID 222. doi: 10.1186/s12864-019-5606-4
- Quigley F., Rosenberg J.M., Shachar-Hill Y., Bohnert H.J. From genome to function: the Arabidopsis aquaporins // Genome Biol. 2001. Vol. 3, N 1. ID research0001.1. doi: 10.1186/gb-2001-3-1-research0001
- Nicolas-Espinosa J., Carvajal M. Genome-wide identification and biological relevance of broccoli aquaporins // Plant Genome. 2022. Vol. 15, N 4. ID e20262. doi: 10.1002/tpg2.20262
- Park W., Scheffler B.E., Bauer P.J., Campbell B.T. Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.) // BMC Plant Biol. 2010. Vol. 10. ID 142. doi: 10.1186/1471-2229-10-142
- Gupta A.B., Sankararamakrishnan R. Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective // BMC Plant Biol. 2009. Vol. 9. ID 134. doi: 10.1186/1471-2229-9-134
- Zhang D.Y., Ali Z., Wang C.B., et al. Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.) // PLoS One. 2013. Vol. 8, N 2. ID e56312. doi: 10.1371/journal.pone.0056312
- Rajora N., Thakral V., Geetika, et al. Understanding aquaporins regulation and silicon uptake in carrot (Daucus carota) // J Plant Biochem Biotechnol. 2023. Vol. 32, N 1. P. 51–62. doi: 10.1007/s13562-022-00780-7
- Sakurai J., Ishikawa F., Yamaguchi T., et al. Identification of 33 rice aquaporin genes and analysis of their expression and function // Plant Cell Physiol. 2005. Vol. 46, N 9. P. 1568–1577. doi: 10.1093/pcp/pci172
- Hove R.M., Ziemann M., Bhave M. Identification and expression analysis of the barley (Hordeum vulgare L.) aquaporin gene family // PLoS One. 2015. Vol. 10, N 6. ID e0128025. doi: 10.1371/journal.pone.0128025
- Reddy P.S., Bhadra Rao T.S.R., Sharma K.K., Vadez V. Genome-wide identification and characterization of the aquaporin gene family in Sorghum bicolor (L.) // Plant Gene. 2015. Vol. 1. P. 18–28. doi: 10.1016/j.plgene.2014.12.002
- Pawłowicz I., Rapacz M., Perlikowski D., et al. Abiotic stresses influence the transcript abundance of PIP and TIP aquaporins in Festuca species // J Appl Genet. 2017. Vol. 58. P. 421–435. doi: 10.1007/s13353-017-0403-8
- Lu Y., Jeffers R., Raju A., et al. Does night-time transpiration provide any benefit to wheat (Triticum aestivum L.) plants which are exposed to salt stress? // Physiol Plant. 2023. Vol. 175, N 1. ID e13839. doi: 10.1111/ppl.13839
- Jang J.Y., Kim D.G., Kim Y.O., et al. An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana // Plant Mol Biol. 2004. Vol. 54, N 5. P. 713–725. doi: 10.1023/b: plan.0000040900.61345.a6
- Lopez-Zaplana A., Martinez-Garcia N., Carvajal M., Bárzana G. Relationships between aquaporins gene expression and nutrient concentrations in melon plants (Cucumis melo L.) during typical abiotic stresses // Environ Exp Bot. 2022. Vol. 195. ID 104759. doi: 10.1016/j.envexpbot.2021.104759
- Solouki A., Berna-Sicilia J.Á., Martinez-Alonso A., et al. Onion plants (Allium cepa L.) react differently to salinity levels according to the regulation of aquaporins // Heliyon. 2023. Vol. 9, N 3. ID e13815. doi: 10.1016/j.heliyon.2023.e13815
- Quiroga G., Erice G., Ding L., et al. The arbuscular mycorrhizal symbiosis regulates aquaporins activity and improves root cell water permeability in maize plants subjected to water stress // Plant Cell Environ. 2019. Vol. 42, N 7. P. 2274–2290. doi: 10.1111/pce.13551
- Nicolas-Espinosa J., Yepes-Molina L., Martinez-Bernal F., et al. Deciphering the effect of salinity and boron stress on broccoli plants reveals that membranes phytosterols and PIP aquaporins facilitate stress adaptation // Plant Sci. 2024. Vol. 338. ID 111923. doi: 10.1016/j.plantsci.2023.111923
- Verdoucq L., Rodrigues O., Martinière A., et al. Plant aquaporins on the move: Reversible phosphorylation, lateral motion and cycling // Curr Opin Plant Biol. 2014. Vol. 22. P. 101–107. doi: 10.1016/j.pbi.2014.09.011
- Li C., Wang W. Molecular biology of aquaporins. В кн.: Aquaporins. Advances in experimental medicine and biology. Vol. 969 / B. Yang, editor. Dordrecht: Springer, 2017. P. 1–34. doi: 10.1007/978-94-024-1057-0_1
- Wu X.N., Rodriguez C.S., Pertl-Obermeyer H., et al. Sucrose-induced receptor kinase SIRK1 regulates a plasma membrane aquaporin in Arabidopsis // Mol Cell Proteom. 2013. Vol. 12, N 10. P. 2856–2873. doi: 10.1074/mcp.M113.029579
- Bellati J., Champeyroux C., Hem S., et al. Novel aquaporin regulatory mechanisms revealed by interactomics // Mol Cell Proteom. 2016. Vol. 15, N 11. P. 3473–3487. doi: 10.1074/mcp.M116.060087
- Fushimi K., Sasaki S., Marumo F. Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel // J Biol Chem. 1997. Vol. 272, N 23. P. 14800–14804. doi: 10.1074/jbc.272.23.14800
- Javot H., Maurel C. The role of aquaporins in water uptake // Ann Bot. 2002. Vol. 90, N 3. P. 301–313. doi: 10.1093/aob/mcf199
- Przedpelska-Wasowicz E.M., Wierzbicka M. Gating of aquaporins by heavy metals in Allium cepa L. epidermal cells // Protoplasma. 2011. Vol. 248, N 4. P. 663–671. doi: 10.1007/s00709-010-0222-9
- Henzler T., Ye Q., Steudle E. Oxidative of water channels (aquaporins) in Chara by hydroxyl radicals // Plant Cell Environ. 2004. Vol. 27, N 9. P. 1184–1195. doi: 10.1111/j.1365-3040.2004.01226.x
- Aroca R. Exogenous catalase and ascorbate modify the effects of abscisic acid (ABA) on root hydraulic properties in Phaseolus vulgaris L. plants // J Plant Growth Regul. 2006. Vol. 25, N 1. P. 10–17. doi: 10.1007/s00344-005-0075-1
- Luu D.-T., Maurel C. Aquaporin trafficking in plant cells: an emerging membrane-protein model // Traffic. 2013. Vol. 14, N 6. P. 629–635. doi: 10.1111/tra.12062
- Sun Q., Liu X., Kitagawa Y., et al. Plant aquaporins: Their roles beyond water transport // Crop J. 2024. Vol. 12, N 3. P. 641–655. doi: 10.1016/j.cj.2024.04.005
- Yepes-Molina L., Bárzana G., Carvajal M. Controversial regulation of gene expression and protein transduction of aquaporins under drought and salinity stress // Plants. 2020. Vol. 9, N 12. ID 1662. doi: 10.3390/plants9121662
- Jackson M.B., Davies W.J., Else M. Pressure-flow relationships, xylem solutes and root hydraulic conductance in flooded tomato plants // Ann Bot. 1996. Vol. 77, N 1. P. 17–24. doi: 10.1006/anbo.1996.0003
- Törnroth-Horsefield S., Wang Y., Hedfalk K., et al. Structural mechanism of plant aquaporin gating // Nature. 2006. Vol. 439, N 7077. P. 688–694. doi: 10.1038/nature04316
- Gitto A., Fricke W. Zinc treatment of hydroponically-grown barley (H. vulgare) plants causes a reduction in root and cell hydraulic conductivity and isoform-dependent decrease in aquaporin gene expression // Physiol Plant. 2018. Vol. 164, N 2. P. 176–190. doi: 10.1111/ppl.12697
- Burke S., Sadaune E., Rognon L., et al. A redundant hydraulic function of root hairs in barley plants grown in hydroponics // Funct Plant Biol. 2020. Vol. 48, N 4. P. 448–459. doi: 10.1071/fp20287
- Matsuo N., Nanjo Y., Tougou M., et al. Identification of putative aquaporin genes and their expression analysis under hypoxic conditions in soybean [Glycine max (L.) Merr.] // Plant Prod Sci. 2012. Vol. 15, N 4. P. 278–283. doi: 10.1626/pps.15.278
- Shivaraj S.M., Deshmukh R., Bhat J.A., et al. Understanding aquaporin transport system in eelgrass (Zostera marina L.), an aquatic plant species // Front Plant Sci. 2017. Vol. 8. ID 1334. doi: 10.3389/fpls.2017.01334
- Yanada K.-i., Kondo K., Ino N., et al. Plasma membrane aquaporins function in moisture regulation during seed germination and leaf hydration in eelgrass // Aquat Bot. 2024. Vol. 192. ID 103760. doi: 10.1016/j.aquabot.2024.103760
- Cozza R., Pangaro T. Tissue expression pattern of two aquaporin-encoding genes in different organs of the seagrass Posidonia oceanica // Aquat Bot. 2009. Vol. 91, N 2. P. 117–121. doi: 10.1016/j.aquabot.2009.03.007
- Serra I.A., Nicastro S., Mazzuca S., et al. Response to salt stress in seagrasses: PIP1;1 aquaporin antibody localization in Posidonia oceanica leaves // Aquat Bot. 2013. Vol. 104. P. 213–219. doi: 10.1016/j.aquabot.2011.05.008
- Hoai P.T.T., Tyerman S.D., Schnell N., et al. Deciphering aquaporin regulation and roles in seed biology // J Exp Bot. 2020. Vol. 71, N 6. P. 1763–1773. doi: 10.1093/jxb/erz555
- Obroucheva N.V., Sinkevich I.A., Lityagina S.V., Novikova G.V. Water relations in germinating seeds // Russ J Plant Physiol. 2017. Vol. 64, N 4. P. 625–633. doi: 10.1134/s102144371703013x
- Nonogaki H. Seed germination and dormancy: The classic story, new puzzles, and evolution // J Integr Plant Biol. 2019. Vol. 61, N 5. P. 541–563. doi: 10.1111/jipb.12762
- Liu H.-Y., Yu X., Cui D.-Y., et al. The role of water channel proteins and nitric oxide signaling in rice seed germination // Cell Res. 2007. Vol. 17, N 7. P. 638–649. doi: 10.1038/cr.2007.34
- Footitt S., Clewes R., Feeney M., et al. Aquaporins influence seed dormancy and germination in response to stress // Plant Cell Environ. 2019. Vol. 42, N 8. P. 2325–2339. doi: 10.1111/pce.13561
- Novikova G.V., Tournaire-Roux C., Sin’kevich I.A., et al. Vacuolar biogenesis and aquaporin expression at early germination of broad bean seeds // Plant Physiol Biochem. 2014. Vol. 82. P. 123–132. doi: 10.1016/j.plaphy.2014.05.014
- Hachez C., Moshelion M., Zelazny E., et al. Localization and quantification of plasma membrane aquaporin expression in maize primary root: a clue to understanding their role as cellular plumbers // Plant Mol Biol. 2006. Vol. 62, N 1–2. P. 305–323. doi: 10.1007/s11103-006-9022-1
- Sakurai J., Ahamed A., Murai M., et al. Tissue and cell-specific localization of rice aquaporins and their water transport activities // Plant Cell Physiol. 2008. Vol. 49, N 1. P. 30–39. doi: 10.1093/pcp/pcm162
- Gambetta G.A., Fei J., Rost T.L., et al. Water uptake along the length of grapevine fine roots: Developmental anatomy, tissue-specific aquaporin expression, and pathways of water transport // Plant Physiol. 2013. Vol. 163, N 3. P. 1254–1265. doi: 10.1104/pp.113.221283
- Suga S., Murai M., Kuwagata T., Maeshima M. Differences in aquaporin levels among cell types of radish and measurement of osmotic water permeability of individual protoplasts // Plant Cell Physiol. 2003. Vol. 44, N 3. P. 277–286. doi: 10.1093/pcp/pcg032
- Knipfer T., Besse M., Verdeil J.-L., Fricke W. Aquaporin-facilitated water uptake in barley (Hordeum vulgare L.) roots // J Exp Bot. 2011. Vol. 62, N 12. P. 4115–4126. doi: 10.1093/jxb/err075
- Javot H., Lauvergeat V., Santoni V., et al. Role of a single aquaporin isoform in root water uptake // Plant Cell. 2003. Vol. 15, N 2. P. 509–522. doi: 10.1105/tpc.008888
- Hejnowicz Z., Sievers A. Reversible closure of water channels in parenchymatic cells of sunflower hypocotyl depends on turgor status of the cells // J Plant Physiol. 1996. Vol. 147, N 5. P. 516–520. doi: 10.1016/s0176-1617(96)80040-x
- Suga S., Imagawa S., Maeshima M. Specificity of the accumulation of mRNAs and proteins of the plasma membrane and tonoplast aquaporins in radish organs // Planta. 2001. Vol. 212, N 2. P. 294–304. doi: 10.1007/s004250000396
- Suga S., Komatsu S., Maeshima M. Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings // Plant Cell Physiol. 2002. Vol. 43, N 10. P. 1229–1237. doi: 10.1093/pcp/pcf148
- Ludevid D., Höfte H., Himelblau E., Chrispeels M.J. The expression pattern of the tonoplast intrinsic protein γ-TIP in Arabidopsis thaliana is correlated with cell enlargement // Plant Physiol. 1992. Vol. 100, N 4. P. 1633–1639. doi: 10.1104/pp.100.4.1633
- Daniels M.J., Chaumont F., Mirkov T.E., Chrispeels M.J. Characterization of a new vacuolar membrane aquaporin sensitive to mercury at a unique site // Plant Cell. 1996. Vol. 8, N 4. P. 587–599. doi: 10.2307/3870337
- Eisenbarth D.A., Weig A.R. Dynamics of aquaporins and water relations during hypocotyl elongation in Ricinus communis L. seedlings // J Exp Bot. 2005. Vol. 56, N 417. P. 1831–1842. doi: 10.1093/jxb/eri173
- Schuurmans J.A.M.J., van Dongen J.T., Rutjens B.P.W., et al. Members of the aquaporin family in the developing pea seed coat include representatives of the PIP, TIP, and NIP subfamilies // Plant Mol Biol. 2003. Vol. 53, N 5. P. 655–667. doi: 10.1023/b: plan.0000019070.60954.77
- McGaughey S.A., Osborn H.L., Chen L., et al. Roles of aquaporins in Setaria viridis stem development and sugar storage // Front Plant Sci. 2016. Vol. 7. ID 1815. doi: 10.3389/fpls.2016.01815
- Muto Y., Segami S., Hayashi H., et al. Vacuolar proton pumps and aquaporins involved in rapid internode elongation of deepwater rice // Biosci Biotechnol Biochem. 2011. Vol. 75, N 1. P. 114–122. doi: 10.1271/bbb.100615
- Shivaraj S.M., Deshmukh R.K., Rai R., et al. Genome-wide identification, characterization, and expression profile of aquaporin gene family in flax (Linum usitatissimum) // Sci Rep. 2017. Vol. 7, N 1. ID 46137. doi: 10.1038/srep46137
- Besse M., Knipfer T., Miller A.J., et al. Developmental pattern of aquaporin expression in barley (Hordeum vulgare L.) leaves // J Exp Bot. 2011. Vol. 62, N 12. P. 4127–4142. doi: 10.1093/jxb/err175
- Fricke W., Knipfer T. Plant aquaporins and cell elongation. В кн.: Plant aquaporins: From transport to signaling / F. Chaumont, S.D. Tyerman, editors. New York: Springer, 2017. P. 107–131. doi: 10.1007/978-3-319-49395-4_5
- Schünmann P.H.D., Ougham H.J. Identification of three cDNA clones expressed in the leaf extension zone and with altered patterns of expression in the slender mutant of barley: A tonoplast intrinsic protein, a putative structural protein and protochlorophyllide oxidoreductase // Plant Mol Biol. 1996. Vol. 31, N 3. P. 529–537. doi: 10.1007/bf00042226
- Wei W., Alexandersson E., Golldack D., et al. HvPIP1;6, a barley (Hordeum vulgare L.) plasma membrane water channel particularly expressed in growing compared with non-growing leaf tissues // Plant Cell Physiol. 2007. Vol. 48, N 8. P. 1132–1147. doi: 10.1093/pcp/pcm083
- Barrieu F., Chaumont F., Chrispeels M.J. High expression of the tonoplast aquaporin ZmTIP1 in epidermal and conducting tissues of maize // Plant Physiol. 1998. Vol. 117, N 4. P. 1153–1163. doi: 10.1104/pp.117.4.1153
- Frangne N., Maeshima M., Schäffner A.R., et al. Expression and distribution of a vacuolar aquaporin in young and mature leaf tissues of Brassica napus in relation to water fluxes // Planta. 2001. Vol. 212, N 2. P. 270–278. doi: 10.1007/s004250000390
- Yooyongwech S., Horigane A.K., Yoshida M., et al. Changes in aquaporin gene expression and magnetic resonance imaging of water status in peach tree flower buds during dormancy // Physiol Plant. 2008. Vol. 134, N 3. P. 522–533. doi: 10.1111/j.1399-3054.2008.01143.x
- Azad A.K., Sawa Y., Ishikawa T., Shibata H. Characterization of protein phosphatase 2A acting on phosphorylated plasma membrane aquaporin of tulip petals // Biosci Biotechnol Biochem. 2004. Vol. 68, N 5. P. 1170–1174. doi: 10.1271/bbb.68.1170
- Nemoto K., Niinae T., Goto F., et al. Calcium-dependent protein kinase 16 phosphorylates and activates the aquaporin PIP2;2 to regulate reversible flower opening in Gentiana scabra // Plant Cell. 2022. Vol. 34, N 7. P. 2652–2670. doi: 10.1093/plcell/koac120
- Bots M., Feron R., Uehlein N., et al. PIP1 and PIP2 aquaporins are differentially expressed during tobacco anther and stigma development // J Exp Bot. 2005. Vol. 56, N 409. P. 113–121. doi: 10.1093/jxb/eri009
- Soto G., Fox R., Ayub N., et al. TIP5;1 is an aquaporin specifically targeted to pollen mitochondria and is probably involved in nitrogen remobilization in Arabidopsis thaliana // Plant J. 2010. Vol. 64, N 6. P. 1038–1047. doi: 10.1111/j.1365-313x.2010.04395.x
- Wudick M.M., Luu D.-T., Tournaire-Roux C., et al. Vegetative and sperm cell-specific aquaporins of Arabidopsis highlight the vacuolar equipment of pollen and contribute to plant reproduction // Plant Physiol. 2014. Vol. 164, N 4. P. 1697–1706. doi: 10.1104/pp.113.228700
- Zhou Y., Setz N., Niemietz C., et al. Aquaporins and unloading of phloem-imported water in coats of developing bean seeds // Plant Cell Environ. 2007. Vol. 30, N 12. P. 1566–1577. doi: 10.1111/j.1365-3040.2007.01732.x
- Ozga J.A., van Huizen R., Reinecke D.M. Hormone and seed-specific regulation of pea fruit growth // Plant Physiol. 2002. Vol. 128, N 4. P. 1379–1389. doi: 10.1104/pp.010800
- Schlosser J., Olsson N., Weis M., et al. Cellular expansion and gene expression in the developing grape (Vitis vinifera L.) // Protoplasma. 2008. Vol. 232, N 3–4. P. 255–265. doi: 10.1007/s00709-008-0280-9
- Fouquet R., Léon C., Ollat N., Barrieu F. Identification of grapevine aquaporins and expression analysis in developing berries // Plant Cell Rep. 2008. Vol. 27, N 9. P. 1541–1550. doi: 10.1007/s00299-008-0566-1
- Shiota H., Sudoh T., Tanaka I. Expression analysis of genes encoding plasma membrane aquaporins during seed and fruit development in tomato // Plant Sci. 2006. Vol. 171, N 2. P. 277–285. doi: 10.1016/j.plantsci.2006.03.021
- O’Brien M., Bertrand C., Matton D.P. Characterization of a fertilization-induced and developmentally regulated plasma-membrane aquaporin expressed in reproductive tissues, in the wild potato Solanum chacoense Bitt. // Planta. 2002. Vol. 215, N 3. P. 485–493. doi: 10.1007/s00425-002-0770-0
- Smart L.B., Vojdani F., Maeshima M., Wilkins T.A. Genes involved in osmoregulation during turgor-driven cell expansion of developing cotton fibers are differentially regulated // Plant Physiol. 1998. Vol. 116, N 4. P. 1539–1549. doi: 10.1104/pp.116.4.1539
- Hu C.-G., Hao H.-J., Honda C., et al. Putative PIP1 genes isolated from apple: Expression analyses during fruit development and under osmotic stress // J Exp Bot. 2003. Vol. 54, N 390. P. 2193–2194. doi: 10.1093/jxb/erg238
- Lv J., CaoY., Tai R., et al. Comparative study of expression patterns of aquaporin (AQP) genes in apple fruits with contrasting ripening behavior // Sci Hortic. 2023. Vol. 318. ID 112133. doi: 10.1016/j.scienta.2023.112133
- Zhu Y.-X., Yang L., Liu N., et al. Genome-wide identification, structure characterization, and expression pattern profiling of aquaporin gene family in cucumber // BMC Plant Biol. 2019. Vol. 19. ID 345. doi: 10.1186/s12870-019-1953-1
- Chinnasamy G.P., Sundareswaran S., Subramanian K.S., et al. Aquaporins and their implications on seeds: A brief review // J Appl Nat Sci. 2021. Vol. 13, N 3. P. 970–980. doi: 10.31018/jans.v13i3.2830
- Maurel C., Kado R.T., Guern J., Chrispeels M.J. Phosphorylation regulates the water channel activity of the seed-specific aquaporin α-TIP // EMBO J. 1995. Vol. 14, N 13. P. 3028–3035. doi: 10.1002/j.1460-2075.1995.tb07305.x
- Hunter P.R., Craddock C.P., Di Benedetto S., et al. Fluorescent reporter proteins for the tonoplast and the vacuolar lumen identify a single vacuolar compartment in Arabidopsis cells // Plant Physiol. 2007. Vol. 145, N 4. P. 1371–1382. doi: 10.1104/pp.107.103945
- Gattolin S., Sorieul M., Frigerio L. Mapping of tonoplast intrinsic proteins in maturing and germinating Arabidopsis seeds reveals dual localization of embryonic TIPs to the tonoplast and plasma membrane // Mol Plant. 2011. Vol. 4, N 1. P. 180–189. doi: 10.1093/mp/ssq051
- Kirpichnikova А., Chen Т., Teplyakova S., Shishova M. Proton pump and plant cell elongation // Biol Commun. 2018. Vol. 63, N 1. P. 32–42. doi: 10.21638/spbu03.2018.105
- Кирпичникова А.А., Кудоярова Г.Р., Емельянов В.В., Шишова М.Ф. Особенности роста растяжением клеток колеоптилей злаков в норме и при затоплении // Экологическая генетика. 2023. Т. 21, № 4. C. 401–417. EDN: QWDPWQ doi: 10.17816/ecogen623901
Дополнительные файлы
