Genome-wide epigenetic changes in compartments of genetically unbalanced human blastocysts

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Epigenetic genome reprogramming is an important determinant of human embryo development. However, its mechanisms remain poorly elucidated, especially in genetically unbalanced embryos.

AIM: The aim of this study is the analysis of DNA methylation and hydroxymethylation levels in trophectoderm and inner cell mass of genetically balanced and unbalanced human blastocysts.

MATERIALS AND METHODS: Twenty-two IVF-derived human blastocysts were enrolled in the study; of these blastocysts, 15 were genetically unbalanced and 7 — genetically balanced. Detection of 5-methylcytosine and 5-hydroxymethylcytosine was performed on trophectoderm and inner cell mass nuclei by indirect immunofluorescence.

RESULTS: In genetically unbalanced blastocysts, the DNA methylation level was elevated in both compartments. The DNA hydroxymethylation level, in contrast, was elevated only in inner cell mass, whereas trophectoderm cells retained the same level as in genetically balanced embryos. These changes equalized the inner cell mass and trophectoderm DNA hydroxymethylation levels in genetically unbalanced blastocysts, while in genetically balanced ones the 5-hydroxymethylcytosine content in inner cell mass lagged behind that in trophectoderm.

CONCLUSIONS: Genetic imbalance is associated with differential epigenetic changes in trophectoderm and inner cell mass cells of human blastocysts: DNA methylation level increases in both compartments while DNA hydroxymethylation level increases only in inner cell mass. The trophectoderm cells in genetically unbalanced blastocysts retain the same hydroxymethylation level as in genetically balanced ones, suggesting a possible explanation of the ability of karyotypically abnormal embryos to implant.

About the authors

Andrei V. Tikhonov

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology

Author for correspondence.
Email: tixonov5790@gmail.com
ORCID iD: 0000-0002-2557-6642
SPIN-code: 3170-2629
Scopus Author ID: 57191821068
ResearcherId: Q-1380-2016

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Mikhail I. Krapivin

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology

Email: krapivin-mihail@mail.ru
ORCID iD: 0000-0002-1693-5973
SPIN-code: 4989-1932
Scopus Author ID: 56507166200
ResearcherId: F-4166-2017
Russian Federation, Saint Petersburg

Olga V. Malysheva

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology

Email: omal99@mail.ru
ORCID iD: 0000-0002-8626-5071
SPIN-code: 1740-2691
Scopus Author ID: 6603763549
ResearcherId: O-9897-2014

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Alla S. Koltsova

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology

Email: rosenrot15@yandex.ru
ORCID iD: 0000-0002-6587-9429
SPIN-code: 3038-4096
Scopus Author ID: 57189621865
ResearcherId: O-1814-2017
Russian Federation, Saint Petersburg

Evgeniia M. Komarova

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology

Email: evgmkomarova@gmail.com
ORCID iD: 0000-0002-9988-9879
SPIN-code: 1056-7821
Scopus Author ID: 57191625749

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Arina V. Golubeva

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology

Email: AlikovaAV1504@yandex.ru
ORCID iD: 0000-0003-1613-222X
SPIN-code: 4610-3686
Russian Federation, Saint Petersburg

Olga A. Efimova

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology

Email: efimova_o82@mail.ru
ORCID iD: 0000-0003-4495-0983
SPIN-code: 6959-5014
Scopus Author ID: 14013324600
ResearcherId: F-5764-2014

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Anna A. Pendina

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology; Saint Petersburg State University

Email: pendina@mail.ru
ORCID iD: 0000-0001-9182-9188
SPIN-code: 3123-2133
Scopus Author ID: 6506976983

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg; Saint Petersburg

References

  1. Hyde KJ, Schust DJ. Genetic considerations in recurrent pregnancy loss. Cold Spring Harb Perspect Med. 2015;5(3):a023119. doi: 10.1101/cshperspect.a023119
  2. Soler A, Morales C, Mademont-Soler I, et al. Overview of chromosome abnormalities in first trimester miscarriages: A series of 1,011 consecutive chorionic villi sample karyotypes. Cytogenet Genome Res. 2017;152(2):81–89. doi: 10.1159/000477707
  3. McCoy RC, Summers MC, McCollin A, et al. Meiotic and mitotic aneuploidies drive arrest of in vitro fertilized human preimplantation embryos. Genome Med. 2023;15(1):77. doi: 10.1186/s13073-023-01231-1
  4. Chatzimeletiou K, Morrison EE, Prapas N, et al. Spindle abnormalities in normally developing and arrested human preimplantation embryos in vitro identified by confocal laser scanning microscopy. Hum Reprod. 2005;20(3):672–682. doi: 10.1093/humrep/deh652
  5. Holubcová Z, Blayney M, Elder K, Schuh M. Human oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science. 2015;348(6239):1143–1147. doi: 10.1126/science.aaa9529
  6. Treff NR, Thompson K, Rafizadeh M, et al. SNP array-based analyses of unbalanced embryos as a reference to distinguish between balanced translocation carrier and normal blastocysts. J Assist Reprod Genet. 2016;33(8):1115–1119. doi: 10.1007/s10815-016-0734-0
  7. Bradley CK, Livingstone M, Traversa MV, McArthur SJ. Impact of multiple blastocyst biopsy and vitrification-warming procedures on pregnancy outcomes. Fertil Steril. 2017;108(6):999–1006. doi: 10.1016/j.fertnstert.2017.09.013
  8. Fragouli E, Alfarawati S, Spath K, et al. Analysis of implantation and ongoing pregnancy rates following the transfer of mosaic diploid-aneuploid blastocysts. Hum Genet. 2017;136:805–819. doi: 10.1007/s00439-017-1797-4
  9. Lledo B, Morales R, Ortiz JA, et al. Implantation potential of mosaic embryos. Syst Biol Reprod Med. 2017;63(3):206–208. doi: 10.1080/19396368.2017.1296045
  10. Munné S, Blazek J, Large M, et al. Detailed investigation into the cytogenetic constitution and pregnancy outcome of replacing mosaic blastocysts detected with the use of high-resolution next-generation sequencing. Fertil Steril. 2017;108(1):62–71.e8. doi: 10.1016/j.fertnstert.2017.05.002
  11. Kubicek D, Hornak M, Horak J, et al. Incidence and origin of meiotic whole and segmental chromosomal aneuploidies detected by karyomapping. Reprod Biomed Online. 2019;38(3):330–339. doi: 10.1016/j.rbmo.2018.11.023
  12. Chow JFC, Cheng HHY, Lau EYL, et al. Distinguishing between carrier and noncarrier embryos with the use of long-read sequencing in preimplantation genetic testing for reciprocal translocations. Genomics. 2020;112(1):494–500. doi: 10.1016/j.ygeno.2019.04.001
  13. Konstantinidis M, Ravichandran K, Gunes Z, et al. Aneuploidy and recombination in the human preimplantation embryo. Copy number variation analysis and genome-wide polymorphism genotyping. Reprod Biomed Online. 2020;40(4):479–493. doi: 10.1016/j.rbmo.2019.12.008
  14. Fragouli E, Lenzi M, Ross R, et al. Comprehensive molecular cytogenetic analysis of the human blastocyst stage. Hum Reprod. 2008;23(11):2596–2608. doi: 10.1093/humrep/den287
  15. Fragouli E, Alfarawati S, Spath K, et al. The origin and impact of embryonic aneuploidy. Hum Genet. 2013;132(9):1001–1013. doi: 10.1007/s00439-013-1309-0
  16. Capalbo A, Poli M, Rienzi L, et al. Mosaic human preimplantation embryos and their developmental potential in a prospective, non-selection clinical trial. Am J Hum Genet. 2021;108(12):2238–2247. doi: 10.1016/j.ajhg.2021.11.002
  17. Chiryaeva OG, Pendina AA, Tikhonov AV, et al. A comparative cytogenetic analysis of miscarriages following natural conception and assisted reproductive technologies. Journal of obstetrics and women’s diseases. 2012;61(3):132–140. EDN: QAQIMR doi: 10.17816/JOWD613132-140
  18. Nagaoka SI, Hassold TJ, Hunt PA. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet. 2012;13(7):493–504. doi: 10.1038/nrg3245
  19. Zhu P, Guo H, Ren Y, et al. Single-cell DNA methylome sequencing of human preimplantation embryos. Nat Genet. 2018;50:12–19. doi: 10.1038/s41588-017-0007-6
  20. Arand J, Reijo Pera RA, Wossidlo M. Reprogramming of DNA methylation is linked to successful human preimplantation development. Histochem Cell Biol. 2021;156(3):197–207. doi: 10.1007/s00418-021-02008-6
  21. Fulka H, Mrazek M, Tepla O, Fulka J Jr. DNA methylation pattern in human zygotes and developing embryos. Reproduction. 2004;128(6):703–708. doi: 10.1530/rep.1.00217
  22. Feng S, Jacobsen SE, Reik W. Epigenetic reprogramming in plant and animal development. Science. 2010;330(6004):622–627. doi: 10.1126/science.1190614
  23. Seisenberger S, Peat JR, Hore TA, et al. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc Lond B Biol Sci. 2013;368(1609):20110330. doi: 10.1098/rstb.2011.0330
  24. Marcho C, Cui W, Mager J. Epigenetic dynamics during preimplantation development. Reproduction. 2015;150(3):R109–R120. doi: 10.1530/REP-15-0180
  25. White CR, MacDonald WA, Mann MR. Conservation of DNA methylation programming between mouse and human gametes and preimplantation embryos. Biol Reprod. 2016;95(3):61. doi: 10.1095/biolreprod.116.140319
  26. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21. doi: 10.1101/gad.947102
  27. Pastor WA, Aravind L, Rao A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol. 2013;14(6):341–356. doi: 10.1038/nrm3589
  28. Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–935. doi: 10.1126/science.1170116
  29. Ito S, Shen L, Dai Q, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333(6047):1300–1303. doi: 10.1126/science.1210597
  30. Guo H, Zhu P, Yan L, et al. The DNA methylation landscape of human early embryos. Nature. 2014;511(7511):606–610. doi: 10.1038/nature13544
  31. Moen EL, Mariani CJ, Zullow H, et al. New themes in the biological functions of 5-methylcytosine and 5-hydroxymethylcytosine. Immunol Rev. 2015;263(1):36–49. doi: 10.1111/imr.12242
  32. Tikhonov AV, Krapivin MI, Malysheva OV, et al. Re-examination of PGT-A detected genetic pathology in compartments of human blastocysts: A series of 23 cases. J Clin Med. 2024;13(11):3289. doi: 10.3390/jcm13113289
  33. Koltsova AS, Efimova OA, Malysheva OV, et al. Cytogenomic profile of uterine leiomyoma: in vivo vs. in vitro comparison. Biomedicines. 2021;9(12):1777. doi: 10.3390/biomedicines9121777
  34. Pendina AA, Efimova OA, Fedorova ID, et al. DNA methylation patterns of metaphase chromosomes in human preimplantation embryos. Cytogenet Genome Res. 2011;132(1–2):1–7. doi: 10.1159/000318673
  35. Efimova OA, Pendina AA, Tikhonov AV, et al. Chromosome hydroxymethylation patterns in human zygotes and cleavage-stage embryos. Reproduction. 2015;149(3):223–233. doi: 10.1530/REP-14-0343
  36. Pendina AA, Krapivin MI, Efimova OA, et al. Telomere length in metaphase chromosomes of human triploid zygotes. Int J Mol Sci. 2021;22(11):5579. doi: 10.3390/ijms22115579
  37. Munné S, Grifo J, Cohen J, Weier HU. Chromosome abnormalities in human arrested preimplantation embryos: a multiple-probe FISH study. Am J Hum Genet. 1994;55(1):150–159.
  38. Munné S, Sultan KM, Weier H-U, et al. Assessment of numeric abnormalities of X, Y, 18, and 16 chromosomes in preimplantation human embryos before transfer. Am J Obstet Gynecol. 1995;172(4):1191–1201. doi: 10.1016/0002-9378(95)91479-x
  39. Pendina AA, Efimova OA, Chiryaeva OG, et al. A comparative cytogenetic study of miscarriages after IVF and natural conception in women aged under and over 35 years. J Assist Reprod Genet. 2014;31(2):149–155. doi: 10.1007/s10815-013-0148-1
  40. Babariya D, Fragouli E, Alfarawati S, et al. The incidence and origin of segmental aneuploidy in human oocytes and preimplantation embryos. Hum Reprod. 2017;32(12):2549–2560. doi: 10.1093/humrep/dex324
  41. Pylyp LY, Spynenko LO, Verhoglyad NV, et al. Chromosomal abnormalities in products of conception of first-trimester miscarriages detected by conventional cytogenetic analysis: a review of 1000 cases. J Assist Reprod Genet. 2018;35(2):265–271. doi: 10.1007/s10815-017-1069-1
  42. Yang M, Tao X, Scott K, et al. Evaluation of genome-wide DNA methylation profile of human embryos with different developmental competences. Hum Reprod. 2021;36(6):1682–1690. doi: 10.1093/humrep/deab074
  43. Chavez SL, Loewke KE, Han J, et al. Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage. Nat Commun. 2012;3:1251. doi: 10.1038/ncomms2249
  44. Grau N, Escrich L, Galiana Y, et al. Morphokinetics as a predictor of self-correction to diploidy in tripronucleated intracytoplasmic sperm injection-derived human embryos. Fertil Steril. 2015;104(3):728–735. doi: 10.1016/j.fertnstert.2015.05.024
  45. Martín Á, Rodrigo L, Beltrán D, et al. The morphokinetic signature of mosaic embryos: evidence in support of their own genetic identity. Fertil Steril. 2021;116(1):165–173. doi: 10.1016/j.fertnstert.2020.12.031
  46. Martin A, Mercader A, Dominguez F, et al. Mosaic results after preimplantation genetic testing for aneuploidy may be accompanied by changes in global gene expression. Front Mol Biosci. 2023;10:1180689. doi: 10.3389/fmolb.2023.1180689
  47. Beaujean N, Hartshorne G, Cavilla J, et al. Non-conservation of mammalian preimplantation methylation dynamics. Curr Biol. 2004;14(7): R266–R267. doi: 10.1016/j.cub.2004.03.019
  48. Fulka H, Barnetova I, Mosko T, Fulka J. Epigenetic analysis of human spermatozoa after their injection into ovulated mouse oocytes. Hum Reprod. 2008;23(3):627–634. doi: 10.1093/humrep/dem406
  49. Guo F, Li X, Liang D, et al. Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell. 2014;15(4):447–459. doi: 10.1016/j.stem.2014.08.003
  50. Gao Y, Li L, Yuan P, et al. 5-Formylcytosine landscapes of human preimplantation embryos at single-cell resolution. PLoS Biol. 2020;18(7):e3000799. doi: 10.1371/journal.pbio.3000799
  51. Parks JC, McCallie BR, Janesch AM, et al. Blastocyst gene expression correlates with implantation potential. Fertil Steril. 2011;95(4):1367–1372. doi: 10.1016/j.fertnstert.2010.08.009
  52. Assou S, Boumela I, Haouzi D, et al. Transcriptome analysis during human trophectoderm specification suggests new roles of metabolic and epigenetic genes. PLoS One. 2012;7(6):e39306. doi: 10.1371/journal.pone.0039306
  53. Liu Y, Zhang Y, Li S, Cui J. Gene expression pattern of trophoblast-specific transcription factors in trophectoderm by analysis of single-cell RNA-seq data of human blastocyst. Funct Integr Genomics. 2021;21(2):205–214. doi: 10.1007/s10142-021-00770-3
  54. Lee S-M. Detecting DNA hydroxymethylation: exploring its role in genome regulation. BMB Rep. 2024;57(3):135–142. doi: 10.5483/BMBRep.2023–0250

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Interphase nuclei of the inner cell mass (ВКМ) and trophectoderm (ТЭ) of genetically balanced and unbalanced human blastocysts after immunocytochemical detection of 5-methylcytosine (AT-5mC) and 5-hydroxymethylcytosine (AT-5hmC)

Download (525KB)
3. Fig. 2. The comparison of immunofluorescently assessed DNA methylation and hydroxymethylation level in trophectoderm (ТЭ) and inner cell mass (ВКМ) cells between genetically balanced and unbalanced human blastocysts. The comparisons were performed with the Mann–Whitney U-test

Download (233KB)
4. Fig. 3. The comparison of immunofluorescently assessed DNA methylation and hydroxymethylation levels between trophectoderm (ТЭ) and inner cell mass (ВКМ) in genetically balanced and unbalanced human blastocysts. The comparisons were performed with the Mann–Whitney U-test

Download (187KB)

Copyright (c) 2024 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».