Получение трансгенных растений люцерны посевной (Medicago Sativa L.) для повышения эффективности фиторемедиации нефтезагрязненных почв


Цитировать

Полный текст

Аннотация

Исследована возможность использования трансгенных растений и их комплекса с микроорганизмами для очистки почвы от нефтезагрязнений. Подобраны условия агробактериальной трансформации и получены трансгенные растения люцерны с геном rhlA, ответственным за биосинтез биосурфактанта - рамнолипида. Выращивание в почве, содержащей 4 % нефти, контрольных и трансгенных растений люцерны показало преимущество растений, выделяющих рамнолипиды: утилизация нефти была на 20 % выше по сравнению с контролем. При совместном использовании трансгенных растений и микроорганизмов Candida maltosа степень утилизации нефти удалось повысить до 86 %. Полученные результаты свидетельствуют о перспективности применения трансгенных растений и их комплекса с микроорганизмами для повышения эффективности биоремедиации.

Об авторах

Анна Юрьевна Степанова

ИФР РАН

Email: step_ann@mail.ru
с. н. с., к. б. н., группа специализированного метаболизма корней

Екатерина Владимировна Орлова

ИФР РАН

Email: ekatia@inbox.ru
н. с., группа специализированного метаболизма корней

Дмитрий Викторович Терешонок

ИФР РАН

Email: diman_ter_vi@mail.ru
н. с., к. б. н., лаборатория генетики культивируемых клеток

Юлия Ивановна Долгих

ИФР РАН

Email: ivan-d1@yandex.ru
д. б. н., зав. лаб, профессор, лаборатория генетики культивируемых клеток

Список литературы

  1. Бричкова Г. Г., Сорокин А. П., Манешина Т. В., Курман П. В., Красовская Л. И., Джонс Дж. Дж., Картель Н. А. (2003) Создание трансгенных растений Arabidopsis thaliana для эффективной ремедиации территорий, загрязненных углеводородами нефти. Доклады НАН Беларуси. Т. 47 (5): С. 72-75.
  2. Другов Ю. С., Родин А. А. (2011) Экологические анализы при разливах нефти и нефтепродуктов. М: Изд-во Бином. Лаборатория знаний.
  3. Киреева Н. А., Тарасенко Е. М., Бакаева М. Д. (2004) Детоксикация нефтезагрязненных почв под посевами люцерны (Medicago sativa L.). Агрохимия. Т. (10): С. 68-72.
  4. Муратова А. Ю., Турковская О. В., Хюбнер Т., Кушк П. (2003) Использование люцерны и тростника для фиторемедиации загрязненного углеводородами грунта. Прикладная биохимия и микробиология. Т. 39 (6): С. 681-688.
  5. Орлова Е. В., Степанова А. Ю. (2012) Оптимизация условий культивирования in vitro люцерны посевной (Medicago sativa L.). Ученые записки Орловского государственного университета. Серия: естественные, технические, медицинские науки. Т. (3): С. 128-131.
  6. Фомин Г. С. (1999) Коррозия и защита от коррозии: Энциклопедия международных стандартов. М: Изд-во стандартов.
  7. Abhilash P. C., Jamil S., Singh N. (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnology advances. V. 27: P. 474-488.
  8. Brychkova G. G., Sorokin A. P., Kartel N. A. (2004) Bioremediation with ecologically safe plants. NATO science series. Series 1: Life and behavioural science IOS press. V. 359: P. 147-158.
  9. Chaillan F., Le Fleche A., Bury E., Phantavong Y. H., Grimont P., Saliot A., Oudot J. (2004) Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Research in microbiology. V. 155 (7): P. 587-595.
  10. Cherian S., Oliveira M. M. (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environmental science and technology. V. 39: P. 9377-9390.
  11. Chrzanowski L., Kaczorek E., Olszanowski A. (2006) The ability of candida maltosa for hydrocarbon and emulsified hydrocarbon degradation. Polish journal of environmental studies. V. 15 (1): P. 47-51.
  12. Das N., Chandran P. (2011) Microbial degradation of petroleum hydrocarbon contaminants. An Overview. Biotechnology research international. doi: 10.4061/2011/941810.
  13. Deak M., Kiss G. B., Koncz C., Dudits D. (1986) Transformation of Medicago by Agrobacterium mediated gene transfer. Plant cell reports. V. 5 (2): P. 97-100.
  14. Deziel E., Lepine F., Milot S., Villemur R. (2000) Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochimica et biophysica acta. V. 1485: P. 145-152.
  15. Faragova N., Gottwaldova K., Farago J. (2011) Effect of transgenic alfalfa plants with introduced gene for Alfalfa Mosaic Virus coat protein on rhizosphere microbial community composition and physiological profile. Biologia. Section botany. V. 66 (5): P. 768-777.
  16. Frick C., Farrell R., Germida J. (1999) Assessment of phytoremediation as an in situ Technique for Cleaning Oil-Contaminated Sites. Calgary: Petroleum technology alliance of Canada. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561093/.
  17. Hodge J.E, Hofreiter B. T. (1962) Methods in carbohydrate chemistry. New York: Academic press. URL: http://www.ijabpt.com/pdf/70034-V.%20K.%20PARTHIBAN1.pdf.
  18. Krapp A., Hofmann B., Schafer C. et al. (1993) Regulation of the expression of rbc S and other photosynthetic genes by carbohydrates: a mechanism for the ‘sink’ regulation of photosynthesis? The plant journal. V. 3 (6): P. 817-828.
  19. Liu W., Liang Z., Shan Ch., Marsolais F. et al. (2013) Genetic transformation and full recovery of alfalfa plants via secondary somatic embryogenesis. In vitro cellular and developmental biology - plant. V. 49: P. 17-23.
  20. Messens E., Dekeyser R., Stachel S. E. (1990) A nontransformable Triticum monococcum monocotyledonous culture produces the potent Agrobacterium vir-inducing compound ethyl ferulate. Proceedings of the National Academy of Sciences, USA. V. 87: P. 4368-4372.
  21. Moller E. M., Bahnurg G., Sandermann H., Jeiger H. H. (1992) A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic acids research. V. 20 (22): P. 6115-6116.
  22. Nincovic S., Miljus-Dukic J., Vinterhalter B. et al. (2004) Improved transformation of alfalfa somatic embryos using superbinary vector. Acta biologica cracoviensia. Series botanica. V. 46: P. 139-143.
  23. Ochsner U. A., Reiser J. (1995) Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proceedings of the national academy of sciences, USA. V. 92: P. 6424-6428.
  24. Rosellini D., Capomaccio S., Ferradini N. et al. (2007) Non-antibiotic, efficient selection for alfalfa genetic engineering. Plant cell reports. V. 26: P. 1035-1044.
  25. Schenk R. U., Hildebrandt A. C. (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Canadian journal of botany. V. 50 (1): P. 199-204.
  26. Shahin E. A., Spielmann A., Sukhapinda K. et al. (1986) Transformation of cultivated alfalfa using disarmed Agrobacterium tumefaciens. Crop science. V. 26: P. 1235-1239.
  27. Shaw L. J., Burns R. G. (2003) Biodegradation of organic Pollutants in the Rhizosphere. Advances in applied microbiology. V. 53: P. 1-47.
  28. Stroud J., Paton G., Semple K. Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation (2007) Journal of applied microbiology. V. 102: P. 1239-1253.
  29. Susarla S., Medina V. F., McCutcheon S. C. (2002) Phytoremediation: an ecological solution to organic chemical contamination Ecological engineering. V. 18: P. 647-658.
  30. Trinh T. H., Ratet P., Kondorosi E. et al. (1998) Rapid and efficient transformation of diploid Medicago truncatula and Medicago sativa ssp. falcata lines improved in somatic embryogenesis. Plant cell reports. V. 17: P. 345-355.
  31. Uzelac B., Ninkovic S., Smigocki A. et al. (2007) Origin and development of secondary somatic embryos in transformed embryogenic cultures of Medicago sativa. Biologia plantarum. V. 51: P. 1-6.
  32. Van Aken B., Yoon J. M., Schnoor J. L. (2004) Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro1,3,5,7-tetranitro-1,3,5-tetrazocine by a phytosymbiotic methylobacterium sp. associated with poplar tissues (Populus deltoides × nigra DN34). Applied and environmental microbiology. V. 70: P. 508-517.
  33. Vancura V. (1964) Root exudates of plants. I. Analysis of root exudates of barley and wheat in their initial phases of growth. Plant and soil XXI. V. 2: P. 231-248.
  34. Vincent J. M. (1970) A manual for the practical study of root nodule bacteria IBP Handbook. Oxford: Blackwell Scientific. URL: http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1972.tb04828.x/pdf.
  35. Wang Q. H., Fang X. D., Bai B. J. et al. (2007) Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnology and bioengineering. V. 98: P. 842-853.
  36. Weeks J. T., Jingsong Y., Rommens C. M. (2008) Development of an in planta method for transformation of alfalfa (Medicago sativa). Transgenic research. V. 17: P. 587-597.
  37. Wittgens A., Tiso T., Arndt T. T. et al. (2011) Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microbial cell factories. V.10: P. 1-18.
  38. Zhang H., Huang Q., Su J. (2010) Development of alfalfa (Medicago sativa L.) regeneration system and Agrobacterium-mediated genetic transformation. Agricultural sciences in China. V. 9 (2): P. 170-178.
  39. Ziauddin A., Lee R. W. H., Lo R. Y. C., Shewen P. E., Strommer J. N. (2004) Transformation of alfalfa with a bacterial fusion gene, Mannheimia haemolytica A1 leukotoxin50-gfp: response with Agrobacterium tumefaciens strains LBA4404 and C58. Plant cell, tissue and organ culture. V. 79: P. 271-278.

© Степанова А.Ю., Орлова Е.В., Терешонок Д.В., Долгих Ю.И., 2015

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.
 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах