Ni hyperaccumulators among North Caucasian plant species of the tribe Alysseae, Brassicaceae

Cover Page

Cite item

Full Text

Abstract

Background. Heavy metals are dangerous industrial pollutants. Phytoremediation technology is a promising way to detoxificate polluted territories. Heavy metals hyperaccumulating plants present the base for development of these technologies. Many hyperaccumulators belong to the family Brassicaceae (mostly to the Alysseae tribe). Results. Analysis of molecular phylogeny and distribution of hyperaccumulation ability within the tribe Alysseae has been performed using sequences of the ITS1-5.8S rDNA-ITS2 region. Neighbor-joining tree has been reconstructed to investigate affinity within Alysseae species. For the first time molecular characters (variable region of the ITS2 structures and compensatory nucleotide substitutions availability) have been used to analyze phylogenetic structure of the tribe. Conclusion. Most of the known hyperaccumulators among species of the Alysseae tribe belong to the Odontarrhena section. ITS2 primary and secondary structure analysis results in the partition of the tribe Alysseae into five clades.

About the authors

Larisa Yur'evna Terent'eva

Komarov Botanical institute, RAS

Email: akeladc@gmail.com
Graduate student. Laboratory of Biosystematics and plant cytology

Elena Evgen'evna Krapivskaya

Komarov Botanical institute, RAS

Email: plantcaryo@gmail.com
Leading Engineer. Laboratory of Biosystematics and plant cytology

Eduard Modrisovich Machs

Komarov Botanical institute, RAS

Email: plantcaryo@gmail.com
Senior researcher (PhD). Laboratory of Biosystematics and plant cytology

Aleksandr Vikent'evich Rodionov

Komarov Botanical institute, RAS

Email: avrodionov@mail.ru
Professor (Dr.Biol.), Head of the Laboratory of Biosystematics and plant cytology

References

  1. Алексеева-Попова Н. В., Дроздова И. В., Калимова И. Б., Беляева А. И. (2013) Аккумуляция и гипераккумуляция тяжелых металлов видами крестоцветных в природных и экспериментальных условиях. Современная ботаника в России. Труды XIII съезда Русского ботанического общества и конференции «Научные основы охраны и рационального использования растительного покрова Волжского бассейна». Т. 2: С. 196-197.
  2. Дроздова И. В., Калимова И. Б., Беляева А. И. (2012) Аккумуляция тяжелых металлов видами растений семейства Cruciferae флоры Северного Кавказа. Биологические системы: устойчивость, принципы и механизмы функционирования: материалы IV Всерос. науч.-практ. конф. с междунар. участием. Ч. 1: С. 282.
  3. Родионов А. В., Тюпа Н. Б., Ким Е. С. с соавт. (2005) Геномная конституция автотетраплоидного овса Avena macrostachya, выявленная путем сравнительного анализа последовательностей ITS1 и ITS2: к вопросу об эволюции кариотипов овсов и овсюгов на ранних этапах дивергенции видов рода Avena. Генетика. Т. 41 (5): C. 646-656.
  4. Al-Shehbaz I. A., Beilstein M. A., Kellogg E. A. (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Pl. Syst. Evol. V. 259: P. 89-120.
  5. Altschul S. F., Gish W., Miller W. et al. (1990) Basic local alignment search tool. J. Mol. Biol. V. 215: P. 403-410.
  6. Basic local alignment search tool. National Center for Biotechnology Information. Cited: 2012-2013.URL: http://blast.ncbi.nlm.nih.gov/Blast.cgi.
  7. Benson D. B., Karsch-Mizrachi I., Lipman D. J. et al. (2005) GenBank. Nucleic Acids Res. V. 33: P. 34-38.
  8. Borhidi A. (2001) Phylogenetic trends in Ni-accumulating plants. South African J. of Sci. V. 97: P. 544-547.
  9. Cecchi L., Gabbrielli R., Arnetoli M. et al. (2010) Evolutionary lineages of nickel hyperaccumulation and systematics in European Alysseae (Brassicaceae): evidence from nrDNA sequence data. Annals of Botany. V. 106: P. 751-767.
  10. Coleman A. W. (2007) Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Research. V. 35: P. 3322-3329.
  11. Doyle J. J., Doyle J. L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin. V. 19: P. 11-15.
  12. Edgar R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. V. 32: P. 1792-1797.
  13. Felsenstein J. (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution. V. 39: P. 783-791.
  14. Gasic K., Korban S. S. (2006) Heavy metal stress. In: Madhava Rao K. V., Raghavendra A. S., Janardhan Reddy K., editors. Physiology and molecular biology of stress tolerance in plants. Netherlands.: Springer; p. 219-254.
  15. GenBank. National Center for Biotechnology Information. Cited: 2012-2013. URL: http://www.ncbi.nlm.nih.gov/genbank/.
  16. Hawumba J. F., Sseruwagi P., Hung Y.-T., Wang L. K. (2010) Bioremediation. In: Wang L. K. et al., editors. Handbook of Environmental Engineering. V. 11: Environmental Bioengineering. LLC.: Springer Science + BusinessMedia; p. 277-316.
  17. Krämer U. (2010) Metal hyperaccumulation in plants. Annu. Rev. Plant Biol. V. 61: P. 517-534.
  18. Memon A. R., Schröder P. (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci. Pollut Res. V. 16: P. 162-175.
  19. Mengoni A., Baker A. J. M., Bazzicalupo M. et al. (2003) Evolutionary dynamics of nickel hyperaccumulation in Alyssum revealed by ITS nrDNA analysis. New Phytologist. V. 159: P. 691-699.
  20. Mullis K., Faloona F., Scharf S.et al. (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. V. 51: P. 263-273.
  21. Ridgway K. P., Duck J. M., Young J. P. W. (2003) Identification of roots from grass swards using PCR-RFLP and FFLP of the plastid trnL (UAA) intron. BMC Ecology. V. 3: P. 8.
  22. RNA Folding Form. The mfold Web Server. Cited: 2012-2013. URL: http://mfold.rit.albany.edu/?q=mfold/RNA-Folding-Form.
  23. Saitou N., Nei M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. V. 4: P. 406-425.
  24. Tang Y., Deng T., Wu Q. et al. (2012) Designing cropping systems for metal-contaminated site: a review. Pedosphere. V. 22: P. 470-488.
  25. Tamura K., Nei M., Kumar S. (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences USA. V. 101: P. 11030-11035.
  26. Tamura K., Peterson D., Peterson N. et al. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution. V. 28: P. 2731-2739.
  27. Thompson J. D., Higgins D. G., Gibson T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. V. 22: Р. 4673-4680.
  28. Verbruggen N., Hermans C., Schat H. (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist. V. 181: P. 759-776.
  29. White T. J., Bruns T., Lee S., Taylor J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M. A., Gelfand D. H., Sninsky J. J., White T. J., editors. PCR protocols: a Guide to methods and Applications. San Diego.: Academic Press; p. 315-322.
  30. Zuker M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. V. 31: P. 3406-3415.
  31. Zuker M., Mathews D. H., Turner D. H. (1999) Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide. In: Barciszewski J., Clark B. F. C., еditors. RNA Biochemistry and Biotechnology. NATO ASI Series. Dordrecht.: Kluwer Academic Publishers; p. 11-43.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Terent'eva L.Y., Krapivskaya E.E., Machs E.M., Rodionov A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».