GENOTYPIC ANALYSIS OF NODULE BACTERIA NODULATING SOYBEAN IN UKRAINE SOILS

Cover Page

Cite item

Full Text

Abstract

Background. Distribution of root nodule bacteria of soybean in soils of Ukraine is the result of intensive cultivation of soybeans over the last 20 years. During the observation the structure of soybean rhizobia populations for the first time we have determined the strains which significantly differ in phenotypic properties from typical slow-growing bacteria of B. japonicum species previously described. These strains are characterized by high speed growth and we tentatively called them “stains with intensive growth”. The aim of our work was to investigate the genotypic properties of microsymbionts of soybeans with different rates of growth spreading in soils of Ukraine. Materials and methods. The 16S rRNA gene and intergenic 16S-23S rRNA region of six strains - typical representatives of soybean nodule bacteria with slow- and intensive growth-rates was carried out. The strains were picked up from different Ukrainian soils. Results. Analysis of the 16S rRNA nucleotide sequences showed the 100% similarity of slow-growing strains to B. japonicum USDA 6T and USDA 4 ones. This analysis proved propinquity of strains with intensive growth to the strain B. japonicum USDA 127 (USDA 123 group). Representatives of this group possessed increased saprophytic competence so as the examined strains. With use of restriction analysis of ITS intergenic region soybean rhizobia were divided among two ITS types: 1st ITS type - strains with intensive growth, 2nd ITS type - slow- growing strains. According to results of ITS-region sequencing soybean rhizobia form 3 reliably different clusters: two of which include slow-growing strains (group USDA 6 and USDA 4), and a third include soybean microsymbionts with intensive growth (USDA 123 group). Conclusion. On the basis of phenotypic and genotypic (16S rRNA and 16S-23S rRNA) analysis all of the investigated soybean strains of root nodule bacteria were related to the Bradyrhizobium japonicum species. The division of strains by the structure of the ITS-region into two genotypes corresponds to the division of strains into two physiological groups: the strains of an intense and slow growth.

About the authors

Dmitriy Valeriyevich Krutylo

Institute of Agricultural Microbiology and Agro-industrial Manufacture, National Academy of Agrarian Sciences of Ukraine

Email: krutilod@mail.ru
Ph.D., senior research scientist, Laboratory of plant-microbial interactions

Vasiliy Sergeyevich Zotov

A. N. Bach Institute of Biochemistry, Russian Academy of Sciences

Email: adni83@yandex.ru
junior research scientist, Laboratory of biochemistry of nitrogen fixation and nitrogen metabolism

References

  1. Бабич А. О. (1993) Сучасне виробництво і використання сої. К.: Урожай. 432 с.
  2. Зотов В. С., Пунина Н. В., Хапчаева С. А. и др. (2012) Новый таксономический маркер клубеньковых бактерий рода Rhizobium и его эволюция. Экологическая генетика. Т. 10(2): С. 50-63.
  3. Коростик Е. В., Пинаев А. Г., Ахтемова Г. А., Андронов Е. Е. (2006) Универсальные 16S rRNA праймеры для описания генетического разнообразия сообщества почвенных прокаріот. Экологическая генетика. Т. 4(4): С. 32-37.
  4. Крутило Д. В., Волкова І. В. (2012) Серологічне різноманіття бульбочкових бактерій сої у ґрунтах України. Агроекологічний журнал. № 4: C. 66-71.
  5. Крутило Д. В., Надкернична О. В., Ковалевська Т. М., Патика В. П. (2008) Біологічна різноманітність бульбочкових бактерій сої в ґрунтах України. Мікробіол. журн. Т. 70(6): С. 27-34.
  6. Патика В. П., Крутило Д. В., Надкернична О. В. та ін. (2010) Фенотипні та генотипні ознаки бульбочкових бактерій сої, поширених у ґрунтах України. Доповіді НАН України. № 8: С. 167-172.
  7. Патика В. П., Коць С. Я., Волкогон В. В. та ін. (2003) Біологічний азот / за ред. В. П. Патики. К.: Світ. 424 с.
  8. Толкачев Н. З. (1990) Модифицированный метод определения количества клубеньковых бактерий сои в почве. Тр. ВНИИСХМ. Т. 60; С. 37-43.
  9. Толкачев Н. З. (1997) Потенциальные возможности симбиотической азотфиксации при выращивании сои на юге Украины. Мікробіол. журн. Т. 59(4): С. 34-41.
  10. Altschul S. F., Gish W., Miller W. et al. (1990) Basic local alignment search tool. J. Mol. Biol. V. 2150: P. 403-410.
  11. Appunu C., N’Zoue A., Laguerre G. (2008) Genetic diversity of native Bradyrhizobia isolated from soybeans (Glycin max L.) in different agricultural-ecological-climatic regions of India. Appl. Environ. Microbiol. V. 74: P. 5991-5996.
  12. Beringer J. E. (1974) R1 transfer in Rhizobium leguminosamm. J. Gen. Microbiol. V. 84: P. 188-198.
  13. Chen W., Wang E., Wang S. et al. (1995) Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, people’s republic of China. Int. J. Syst. Bacteriol. V. 45(1): Р. 153-159.
  14. Chen W. X., Yan G. H., Li J. L. (1988) Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int. J. Syst. Bacteriol. V. 38(4): Р. 392-397.
  15. Godoy L. P., Vasconcelos A. T. R., Chueire L. M. O. et al. (2008) Genomic panorama of Bradyrhizobium japonicum CPAC 15, a commercial inoculant strain largely established in Brazilian soils and belonging to the same serogroup as USDA 123. Soil Biology and Biochemistry. V. 40(11): P. 2743-2753.
  16. Hall T. A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. V. 41: P. 95-98.
  17. Ham G. E., Frederick L. R., Anderson I. C. (1971) Serogroups of Rhizobium japonicum in soybean nodules sampled in Iowa. Agronomy Journal. V. 63(1): Р. 69-72.
  18. Jaiswal S. K., Anand A., Dhar B., Vaishampayan A. (2012) Genotypic characterization of phage-typed indigenous soybean Bradyrhizobia and their host range symbiotic effectiveness. Microbiol. Ecol. V. 63 (1): P. 116-126.
  19. Jordan D. C. (1982) Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int. J. Syst. Bacteriol. V. 32: P. 136-139.
  20. Keyser H. H., Cregan P. B. (1987) Nodulation and Competition for nodulation of selected soybean genotypes among Bradyrhizobium japonicum serogroup 123 isolates. Appl Environ. Microbiol. V. 53(11): P. 2631-2635.
  21. Kumar S., Tamura K., Nei M. (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics. V. 5: P. 150-163.
  22. Laguerre G. (1992) Plasmid profiles and restriction fragment length polymorphism of Rhizobium leguminosarum bv. viceae in field populations. FEMS Microbiol. Ecol. V. 10: P. 17-26.
  23. Madrzak C. J., Golinska B., Kroliczak J., et al. (1995) Diversity among Field Populations of Bradyrhizobium japonicum in Poland. Appl. Environ. Microbiol. Vol. 61(4): P. 1194-1200.
  24. Nei M., Kumar S. (2000) Molecular evolution and phylogenetics. New York: Oxford University Press. 336 p.
  25. Normand P., Ponsonnet C., Nesme X., et al. (1996) ITS analysis of prokaryotes. Molec. Microbial Ecology Manual. V. 5(3.4): P. 1-12.
  26. Ponsonnet C., Nesme X. (1994) Identification of Agrobacterium strains by PCR-RFLP analysis of pTi and chromosomal regions. Arch. Microbiol. V. 161: P. 300-309.
  27. Rhizobiaceae. Молекулярная биология бактерий, взаимодействующих с растениями / под ред. Спайнка Г., Кондороши А., Хукаса П. Пер. с англ. С-Пб.: Бионт. 2002. 558 с.
  28. Saeki Y., Murata T., Yamakawa T., Akao S. (2007) Differentiation of soybean-nodulating Bradyrhizobium USDA strains using restriction fragment length polymorphism analysis of 23S-5S rRNA genes. Soil Science and Plant Nutrition. V. 53: P. 562-567.
  29. Thompson J. D., Higgins D. G., Gibson T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nuc. Ac. Res. V. 22: P. 4673-4680.
  30. Van Berkum P., Fuhrmann J. J. (2000) Evolutionary relationships among the soybean Bradyrhizobia reconstructed from 16S rRNA gene and internally transcribed spacer region sequence divergence. Int. J. Syst. EV. Microbiol. V. 50: P. 2165-2172.
  31. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. (1991) 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. V. 173: P. 697-703.
  32. Willems А. (2006) The taxonomy of rhizobia: an overview. Plant and Soil. V. 287: P. 3-14.
  33. Xu L. M., Ge C., Cui Z. et al. (1995) Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int. J. Syst. Bacteriol. V. 45: P. 706-711.

Copyright (c) 2013 Krutylo D.V., Zotov V.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies