Divergence in expression of PHO3, 5, 11, 12 paralogues yeasts is the mechanism guiding the evolution of multigene families

Cover Page

Cite item

Full Text

Abstract

This review considers evolution of multigene families based on the example of the PHO gene family, which encodes acid phosphatases. An analysis of databases revealed that the divergence of regulation of structural genes transcription and their involvement in novel regulatory pathways, is the main direction in evolution of multigene families.

About the authors

Elena Viktorovna Sambuk

Saint-Petersburg State University

Email: esambuk@mail.ru
Deptartment of Genetics and Biotechnology

Marina Vladimirovna Padkina

Saint-Petersburg State University

Email: mpadkina@mail.ru
Deptartment of Genetics and Biotechnology

References

  1. Савинов В. А., Самбук Е. В., Падкина М. В. (2007) Природные и рекомбинантные фитазы микроорганизмов. Вестн. С.-Петерб. Ун-та. Сер.3, Вып. 2. С. 66-75.
  2. Abdulrehman D., Monteiro P. T., Teixeira M. C., et al. (2011) YEASTRACT: providing a programmatic access to curated transcriptional regulatory associations in Saccharomyces cerevisiae through a web services interface. Nucl. acids res. V. 39: P. D136-D140.
  3. Albertin W., Marullo P. (2012) Polyploidy in fungi: evolution after whole-genome duplication. Proc. Boil. sci. V. 279: P. 497-509.
  4. Almer A., Hörz W. (1986) Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of the PHO5/PHO3 locus in yeast. EMBO J. V. 5: P. 2681-2687.
  5. Bergman L. W., Stranathan M. C., Preis L. H. (1986) Structure of the transcriptionally repressed phosphate-repressible acid phosphatase gene (PHO5) of Saccharomyces cerevisiae. Mol. cell. biol. V. 6: P. 38-46.
  6. Carlson M., Celenza J. L., Eng F. J. (1985) Evolution of the dispersed SUC gene family of Saccharomyces by rearrangements of chromosome telomeres. Mol. cell. biol. V. 5: P. 2894-2902.
  7. Chatr-Aryamontri A., Breitkreutz B.-J., Heinicke S., et al. (2013) The BioGRID interaction database: 2013 update. Nucl. acid. Res. V. 41 (Database issue): D 816-23. doi: 10.1093/nar/gks1158.
  8. Christiaens J. F., Van Mulders S. E., Duitama J., et al. (2012) Functional divergence of gene duplicates through ectopic recombination. EMBO Rep. V. 13: P. 1145-1151.
  9. Cliften P. F., Fulton R. S., Wilson R. K., Johnston M. (2006) After duplication: gene loss and adaptation in Saccharomyces genome. Genetics. V. 172: P. 863-872
  10. De Steensma H. Y., de Jonge P., Kaptein A., Kaback D. B. (1989) Molecular cloning of chromosome I DNA from Saccharomyces cerevisiae: localization of a repeated sequence containing an acid phosphatase gene near a telomere of chromosome I and chromosome VIII. Curr. genet. V. 16: P. 131-137.
  11. Dong D., Yuan Z., Zhang Z., 2011. Evidences for increased expression variation of duplicate genes in budding yeast: from cis- to trans-regulation effects. Nucl. acids res. V. 39: P. 837-847.
  12. Fares M. A., Keane O. M., Toft C., et al. (2013) The roles of whole-genome and small-scale duplications in the functional specialization of Saccharomyces cerevisiae genes. PLoS Genet. V. 9: e1003176. doi: 10.1371/journal.pgen.1003176.
  13. Franceschini A., Szklarczyk D., Frankild S., et al. (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. V. 1 (Database issue): D 808-815.
  14. Force A., Lynch M., Pickett F. B., et al. (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics. V. 151: P. 1531-1545.
  15. Gregory P. D., Schmid A., Zavari M., Lui L., Berger S. L., Horz W. (1998) Absence of Gcn5 HAT activity defines a novel state in the opening of chromatin at the PHO5 promoter in yeast. Mol. cell. V. 1: P. 495-505.
  16. Harbison C. T., Gordon D. B., Lee T. I., et al. (2004) Transcriptional regulatory code of a eukaryotic genome. Nature. V. 431: P. 99-104.
  17. Hu Z., Killion P. J., Iyer V. R. (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nat Genet. V. 39: P. 683-687.
  18. Hurles M. (2004) Gene duplication: the genomic trade in spare parts. PLoS Biol. V. 2: E206.
  19. Katju V., Farslow J. C., Bergthorsson U. (2009) Variation in gene duplicates with low synonymous divergence in Saccharomyces cerevisiae relative to Caenorhabditis elegans. Genome Biol. V. 10: R75. doi: 10.1186/gb-2009-10-7-r75.
  20. Kowalska E, Kozik A. (2008) The genes and enzymes involved in the biosynthesis of thiamin and thiamin diphosphate in yeasts. Cell. mol. biol. lett. V. 13; P. 271-282.
  21. Kroll K., Pähtz V., Kniemeyer O. (2013) Elucidating the fungal stress response by proteomics. J. Proteomics. V. 10. doi: pii: S1874-3919 (13) 00315-1.
  22. Lau W., Schneider K. R., O’Shea E. K. (1998) A genetic study of signaling processes for repression of PHO5 transcription in Saccharomyces cerevisiae. Genetics. V. 150: P. 1349-1359.
  23. Lau W.-T., Howson R. W., Malkus P., et al. (2000) Pho86p, an endoplasmic reticulum (ER) resident protein in Saccharomyces cerevisiae is requred for ER exit of the high-affinity phosphate transporter Pho84p. Proc. natl. acad. sci. USA. V. 97: P. 1107-1112.
  24. Levasseur A., Pontarotti P. (2011) The role of duplications in the evolution of genomes highlights the need for evolutionary-based approaches in comparative genomics. Biology direct. V. 6: P. 11-23.
  25. Li H., Johnson A. D. (2010) Evolution of transcription networks-lessons from yeasts. Curr. biol. V. 20: P. 746-753.
  26. Lynch M., Conery J. S. (2000) The evolutionary fate and consequences of duplicate genes. Science. V. 290: P. 1151-1155.
  27. Mao C., Brown C. R., Griesenbeck J., Boeger H. (2011) Occlusion of regulatory sequences by promoter nucleosomes in vivo. PLoS One. V. 6: e17521. doi: 10.1371/journal.pone.0017521.
  28. Meyhack B., Baiwa W., Rudolph H., Hinnen A. (1982) Two yeast acid phosphatase structural genes are the result of a tandem duplication and show different degrees of homology in their promoter and coding sequences. EMBO J. V. 1: P. 675-680.
  29. Mizunaga T., Izawa M., Ikeda K., et al. (1988) Secretion of an active nonglycosylated form of the repressible acid phosphatase of Saccharomyces cerevisiae in the presence of tunicamycin at low temperatures. J. Biochem. (Tokyo). V. 103: P. 321-326.
  30. Nishimura K., Yasumura K., Igarashi K., Harashima S., Kakinuma Y. (1999) Transcription of some PHO genes in Saccharomyces cerevisiae is regulated by spt7p. Yeast. V. 15: P. 1711-1717.
  31. Nosaka K., Nishimura H., Iwashima A. (1989) Identity of soluble thiamine-binding protein with thiamine repressible acid phosphatase in Saccharomyces cerevisiae. Yeast. V. 5: P. 447-451.
  32. Ohno S. (1993) Patterns in genome evolution. Curr. Opin. Genet Dev. V. 3: P. 911-914.
  33. Papp B., Pal C., Hurst L. D. (2003) Evolution of cis-regulatory elements in duplicated genes in yeast. Trends in Genetics. V. 19: P. 417-422
  34. Sambuk E. V., Fizikova A. Y., Savinov V. A., Padkina M. V. (2011) Acid phosphatases of budding yeast as a model of choice for transcription regulation research. Enzyme Res.; 2011:356093. doi: 10.4061/2011/356093.
  35. Shnyreva M. G., Petrova E. V., Egorov S. N., Hinnen A. (1996) Biochemical properties and excretion behavior of repressible acid phosphatases with altered subunit composition. Microbiol. Res. V. 151: P. 291-300.
  36. Singleton C. K. (1997) Identification and characterization of the thiamine transporter gene of Saccharomyces cerevisiae. Gene. V. 15: P. 111-121.
  37. Takashita H., Kajiwara Y., Shimoda M., et al. (2013) Genetic instability of constitutive acid phosphatase in shochu and sake yeast. J. biosci. bioeng. V. 116: P. 71-78.
  38. Thill G. P., Kramer R. A., Turner K. J., Bostian K. A. (1983) Comparative analysis of the 5’-end regions of two repressible acid phosphatase genes in Saccharomyces cerevisiae. Mol. cell. biol. V. 3: P. 570-579.
  39. Toh-E A., Kakimoto S. (1975) Genes coding for the structure of the acid phosphatases in Saccharomyces cerevisiae. Mol. gen. genet. V. 143: P. 65-70.
  40. Tsai Z. T., Tsai H. K., Cheng J. H., et al. (2012) Evolution of cis-regulatory elements in yeast de novo and duplicated new genes. BMC Genomics. V. 13: P. 717-729.
  41. Van Hoek M. J., Hogeweg P. (2009) Metabolic adaptation after whole genome duplication. Mol. biol. eV. V. 26: P. 2441-2453.
  42. Venter U, Hörz W. (1989) The acid phosphatase genes PHO10 and PHO11 in S. cerevisiae are located at the telomeres of chromosomes VIII and I. Nucleic acids res. V. 17: P. 1353-1369.
  43. Yona A. H., Manor Y. S., Herbst R. H., et al. (2012) Chromosomal duplication is a transient evolutionary solution to stress. Proc. natl. acad. sci. U S A. V. 109: P. 21 010-21 015.

Copyright (c) 2013 Sambuk E.V., Padkina M.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies