Features of the organization and functioning of a unique class of plant receptor kinases containing lysm-motives in the extracellular domain

Cover Page

Cite item

Full Text

Abstract

Analysis of current data concerning functioning, structural organization and evolutionary aspects of origin for a unique class of the plant LysM-receptors has been performed. Plant receptors with LysM-motifs in the extracellular domain act as mediators in recognition of N-acetylglucosamine-containing compounds. Such compounds from pathogenic bacteria and fungi cause activation of plant defense systems, while the compounds secreted by symbiotic microorganisms trigger endosymbiosis formation. A possible mode of receptor operation in binding of structurally similar microbial signals, that leads to pathogen resistance or endosymbiosis development, as well as the role of LysM-receptors in these processes, have been examined.

About the authors

Anna Nikolaevna Kirienko

All-Russia Research Institute for Agricultural Microbiology

Email: kirienkoann@yandex.ru
инженер-исследователь, лаборатория молекулярной и клеточной биологии

Irina Viktorovna Leppyanen

All-Russia Research Institute for Agricultural Microbiology

Email: leppyanen_irina@rambler.ru
м. н. с., лаборатория молекулярной и клеточной биологии

Elena Anatolyevna Dolgikh

All-Russia Research Institute for Agricultural Microbiology

Email: dol2helen@yahoo.com
в. н. с., к. б. н., лаборатория молекулярной и клеточной биологии

References

  1. Жуков В. А., Рычагова Т. С., Штарк О. Ю. и др. (2008) Генетический контроль специфичности взаимодействия бобовых растений с клубеньковыми бактериями. Экологическая генетика. Т. VI.(4): С. 12-19.
  2. Проворов Н. А., Борисов А. Ю., Тихонович И. А. (2002) Сравнительная генетика и эволюционная морфология симбиозов растений с микробами-азотфиксаторами и эндомикоризными грибами. Журн. общ. биол. Т. 63(6): С. 451-472.
  3. Albrecht C., Geurts R., Bisseling T. (1999) Legume nodulation and mycorrhizal formation; two extremes in host specificity meet. The EMBO Journal. V. 18(2): P. 281-288.
  4. Ardourel M., Demont N., Debelle F. D., et al. (1994) Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell. V. 6: P. 1357-1374.
  5. Arrighi J. F., Barre A., Ben Amor B., et al. (2006) The Medicago truncatula lysin motif- receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol. V. 142: P. 265-279.
  6. Baureithel K., Felix G., Boll T. (1994) Specific, High Affinity Binding of Chitin Fragments to Tomato Cells and Membranes. The Journal of Biological Chemistry. V. 269(27): P. 17 931-17 938.
  7. Ben Amor B., Shaw S. L., Oldroyd G. E. D., et al. (2003) The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant J. V. 34: P. 495-506.
  8. Buist G., Steen A., Kok J., Kuipers O. P. (2008) LysM, a widely distributed protein motif for binding to (peptido)glycans. Mol. Microbiol. V. 68: P. 838-847.
  9. Carlson R. W., Price N. P., Stacey G. (1994) The biosynthesis of rhizobial lipo-oligosaccharide nodulation signal molecules. Mol Plant Microbe Interact. V. 7(6): P. 684-695.
  10. Dickson S. (2004) The Arum-Paris continuum of micorrhizal symbioses. New Phytol. V. 163: P. 186-200.
  11. Duc G., Trouvelot A., Gianinazzi-Pearson S., et al. (1989) First report of non- mycorrhizal plant mutant (Myc-) obtained in pea (Pisum sativum L.) and fababean (Vicia faba L.). Plant Sci. V. 60: P. 215-222.
  12. Fliegmann J., Canova S., Lachaud C., et al. (2013) Lipo-chitooligosaccharidic symbiotic signals are recognized by LysM Receptor-Like Kinase LYR3 in the Legume Medicago truncatula. ACS Chem. Biol., V. 8 (9): P 1900-1906.
  13. Geiger O., Thomas-Oates J. E., Glushka J., et al. (1994) Phospholipids of Rhizobium contain nodE-determined highly unsaturated fatty acid moieties. J. Biol. Chem. V. 269(15): P. 11 090-11 097.
  14. Geurts R., Heidstra R., Hadri A-E., et al. (1997) Sym2 of Pisum sativum is involved in Nod factor perception mechanism that controls the infection process in the epidermis. Plant Physiology. V. 115: P. 351-359.
  15. Gherbi H., Markmann K., Svistoonoff S. et al. (2008) SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. Proc. Natl. Acad. Sci. USA. V. 105(12): P. 4928-4932.
  16. Gianinazzi-Pearson V. (1996) Plant Cell Responses to Arbuscular Mycorrhizal Fungi: Getting to the Roots of the Symbiosis. Plant Cell. V. 8(10): P. 1871-1883.
  17. Gough C., Cullimore J. (2011) Lipo-chitooligosaccharide Signaling in Endosymbiotic Plant-Microbe Interactions. Mol. Plant Microbe Interact. V. 24(8): P. 867-878.
  18. Gust A. A., Biswas R., Lenz H. D., et al. (2007) Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. The Journal Of Biological Chemistry. V. 282(44): P. 32 338-32 348.
  19. Iizasa E., Mitsutomi M., Nagano Y. (2010) Direct binding of a plant LysM receptor-like kinase, LysM RLK1/CERK1 to chitin in vitro. J. Biol. Chem. V. 285: P. 2996-3004.
  20. Kaku H., Nishizawa Y., Ishii-Minami N., et al. (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc. Natl. Acad. SciUSA. V. 103: P. 11 086-11 091.
  21. Kouchi H., Imaizumi-Anraku H., Hayashi M., et al. (2010) How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. Plant Cell Physiol. V. 51: P. 1381-1397.
  22. Li R., Knox M. R., Edwards A. et al. (2011) Natural variation in host-specific nodulation of pea is associated with a haplotype of the SYM37 LysM-type receptor-like kinase. MPMI. V. 24: P. 1396-1403.
  23. Limpens E., Franken C., Smit P., et al. (2003) LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science. V. 302. P. 630-633.
  24. Liu B., Li J. F., Ao Y. et al. (2012). Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity. Plant Cell. V. 24: P. 3406-3419.
  25. Liu T., Liu Z., Song C., et al. (2012) Chitin-induced dimerization activates a plant immune receptor. Science. V. 336: P. 1160-1164.
  26. Lohmann G. V., Shimoda Y., Nielsen M. W. et al. (2010) Evolution and regulation of the Lotus japonicus LysM receptor gene family. Mol. Plant-Microbe Interact. V. 23: P. 510-521.
  27. Madsen E. B., Antolin-Llovera M., Grossmann C., et al. (2011) Autophosphorylation is essential for in vivo function of the Lotus japonicus Nod Factor Receptor 1 and receptor mediated signalling in cooperation with Nod Factor Receptor 5. Plant J. V. 65: P. 404-417.
  28. Madsen E. B., Madsen L. H., Radutoiu S., et al. (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature. V. 425: P. 637-640.
  29. Maillet F., Poinsot V., André O. et al. (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature. V. 469: P. 58-63.
  30. Miya A., Albert P., Shinya T., et al. (2007) CERK1, a LysM receptor kinase, isessential for chitin elicitor signaling in Arabidopsis. Proc. Natl. Acad. Sci USA. V. 104: P. 19 613-19 618.
  31. Nakagawa T., Kaku H., Shimoda Y., et al. (2011) From defense to symbiosis: Limited alterations in the kinase domain of LysM receptor-like kinases are crucial for evolution of legume- Rhizobium symbiosis. Plant J. V. 65. P. 169-180.
  32. Ohnuma T., Onaga S., Murata K., et al. (2008) LysM domains from Pteris ryukyuensis chitinase-A: A stability study and characterization of the chitin-binding site. J. Biol. Chem. V. 283: P. 5178-5187.
  33. Ohsten Rasmussen M., Hogg B., Bono J. J., et al. (2004) New access to lipo-chitooligosaccharide nodulation factors. Org. Biomol. V. 2: P. 1908-1910.
  34. Op den Camp R., Streng A., De Mita S., et al. (2011) LysM-type mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume Parasponia. Science. V. 18: P. 909-912.
  35. Petutschnig E. K., Jones A. M. E., Serazetdinova L., et al. (2010) The LysM-RLK CERK1 is a major chitin binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J. Biol. Chem. V. 285(37): P. 28 902-28 911.
  36. Radutoiu S., Madsen L. H., Madsen E. B., et al. (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature. V. 425: P. 585-592.
  37. Radutoiu S., Madsen L. H., Madsen E. B., et al. (2007) LysM domains mediate lipochitin- oligosaccharide recognition and Nfr genes extend the symbiotic host range. Eur. Mol. Biol. Organ. J. V. 26: P. 3923-3935.
  38. Shimizu T., Nakano T., Takamizawa D., et al. (2010) Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. The Plant Journal. V. 64: P. 204-214.
  39. Shinya T., Motoyama N., Ikeda A., et al. (2012) Functional characterization of CEBiP and CERK1 homologs in Arabidopsis and rice reveals the presence of different chitin receptor systems in plants. Plant Cell Physiol. V. 53: P. 1696-1706.
  40. Shiu S. H., Karlowski W. M., Pan R. S., et al. (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell. V. 16: P. 1220-1234.
  41. Streng A., op den Camp R., Bisseling T., et al. (2011) Evolutionary origin of rhizobium Nod factor signaling. Plant Signal Behav. V. 6(10): P. 1510-1514.
  42. Tanaka S., Ichikawa A., Yamada K., et al. (2010) HvCEBiP, a gene homologous to rice chitin receptor CEBiP, contributes to basal resistance of barley to Magnaporthe oryzae. BMC Plant Biology. V. 10(288): P. 1471-2229.
  43. Walker S. A., Allan J., Downie J. A. (2000) Entry of Rhizobium leguminosarum bv. viciae into root hairs requires minimal Nod factor specificity, but subsequent infection thread growth requires nodO or nodE. MPMI. V. 13: P. 754-762.
  44. Wan J., Tanaka K., Zhang X. C., et al. (2012) LYK4, a lysin motif receptor-like kinase, is important for chitin signaling and plant innate immunity in Arabidopsis. Plant Physiol. V. 160: P. 396-406.
  45. Wan J., Zhang S., Stacey G. (2004) Activation of a mitogen-activated protein kinase pathway in Arabidopsis by chitin. Mol. Plant Pathol. V. 5: P. 125-135.
  46. Wan J., Zhang X.-C., Neece D., et al. (2008) A LysM Receptor-Like Kinase Plays a Critical Role in Chitin Signaling and Fungal Resistance in Arabidopsis. The Plant Cell. V. 20: P. 471-481.
  47. Willmann R., Lajunen H. M., Erbs G., et al. (2011) Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc. Natl. Acad. Sci. USA. V. 108: P. 19 824-19 829.
  48. Zeng L., Velásquez A. C., Munkvold K. R., et al. (2012) A tomato LysM receptor- like kinase promotes immunity and its kinase activity is inhibited by AvrPtoB. Plant J. V. 69(1): P. 92-103.
  49. Zhang X., Cannon S., Stacey G. (2009) Evolutionary genomics of LysM genes in land plants. BMC EV. Biol. V. 3(9): P. 183.
  50. Zhang X., Wu X., Findley S. (2007) Molecular evolution of lysin motiftype receptor-like kinases in plants. Plant Physiol. V. 144: P. 623-636.
  51. Zhukov V., Radutoiu S., Madsen L. H., et al. (2008) The pea Sym37 receptor kinase gene controls infection-thread initiation and nodule development. Mol. Plant-Microbe Interact. V. 21: P. 1600-1608

Copyright (c) 2013 Kirienko A.N., Leppyanen I.V., Dolgikh E.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies