Root-specific expression of early auxin-regulated

Cover Page

Cite item

Full Text

Abstract

At the variable environmental conditions plant growth and development are under the control of different factors triggered shifts in hormonal balance and followed changes in intensity of hormone-induced gene expression. Root-specific expression of early auxin-regulated genes, belonged to Aux/IAAs, SAURs, ARFs и GH3s gene families, was tested with specially designed chip. An auxin treatment (15, 30 and 60 min) led to increase of IAA1, IAA3, IAA5, IAA11, IAA19 and GH3-1, GH3-3, GH3-5 genes. Intensification of SAUR9 and SAUR10 genes expression was less significant and appeared only at 30 min.

About the authors

Mariya Fedorovna Shishova

Saint Petersburg State University

Email: mshishova@mail.ru
Professor, Faculty of Biology, Department of Plant Physiology and Biochemistry

Martin Pahler

Leibniz Universitaet Hannover

Email: paehler@iftc.uni-hannover.de
Scientific Researcher, Fakultaet fuer Naturwissenschaften, Institut fuer Technische Chemie

Frank Stahl

Leibniz Universitaet Hannover

Email: Stahl@iftc.uni-hannover.de
Professor, Fakultaet fuer Naturwissenschaften, Institut fuer Technische Chemie

Guenther Scherer

Leibniz Universitaet Hannover

Email: scherer@zier.uni-hannover.de
rofessor, Fakultaet fuer Naturwissenschaften, Institut fuer Zierpflanzen- und Gehoelzwissenschaften, Abteilung Molekulare Ertragsphysiologie

References

  1. Шишова М. Ф., Опперман К., Пахлер М., Шталь Ф., Шерер Г. (2011) Орган-специфичная экспрессия ранних ауксин-зависимых генов проростков арабидопсиса. Вестник С.-Петербургского ун-та. Сер. 3. Вып. 3. С. 89-100.
  2. Ainley W. M., Walker J. C., Nagao R. T., Key J. L. (1988) Sequence and characterization of two auxin-regulated genes from soybean. J. Biol. Chem. Vol. 263. P. 10 658-10666.
  3. Abel S., Oeller P. W., Theologis A. (1994) Early auxininduced genes encode short-lived nuclear proteins. PNAS. Vol. 91. P. 326-330.
  4. Abel S., Nguyen M. D., Chow W. et al. (1995) ACS4, a primary indoleacetic acid-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana. Journal Biol. Chem. Vol. 270. P. 19 093-19099.
  5. Abel S., Theologis A. (1995) A polymorphic bipartite motif signals nuclear targeting of early auxin-inducible proteins related to PS-IAA4 from pea (Pisum sativum). Plant J. Vol. 8. P. 87-96.
  6. Abel S., Theologis A. (1996) Early genes and auxin action. Plant Physiology. Vol. 111. P. 9-17.
  7. Bari R., Jones J. D. G. (2009) Role of plant hormones in plant defence responses. Plant Mol Biol. Vol. 69. P. 473-488.
  8. Bierfreund N. M., Tintelnot S., Reski R., Decker E. L. (2004) Loss of GH3 function does not affect phytochrome-mediated development in a moss, Physcomitrella patens. J. Plant Physiol. Vol. 161. P. 823-835.
  9. Chehab E. W., Eich E., Braam J. (2009) Thigmomorphogenesis: a complex plant response to mechano-stimulation. J. Exp. Botany. Vol. 60. P. 43-56.
  10. Dargeviciute A., Roux C., Decreux A. et al. (1998) Molecular cloning and expression of the early auxin-responsive Aux/IAA gene family in Nicotiana tabacum. Plant Cell Physiol. Vol. 39. P. 993-1002.
  11. Dharmasiri N., Estelle M. (2004) Auxin signaling and regulated protein degradation. Trends Plant Sci. Vol. 9. P. 302-308.
  12. Dharmasiri N., Dharmasiri S., Weijers D. et al. (2005) Plant development is regulated by a family of auxin receptor F box proteins. Dev. Cell. Vol. 9. P. 109-119.
  13. Esmon C. A., Tinsley A. G., Ljung K. et al. (2006) A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. PNAS. Vol. 103. P. 236-241.
  14. Gil P., Liu Y., Orbovic V. et al. (1994) Characterization of the auxin-inducible SAUR-AC1 gene for use as a molecular genetic tool in Arabidopsis. Plant Physiology. Vol. 104. P. 777-784.
  15. Goda H., Sasaki E., Akiyama K. et al. (2008) The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant J. Vol. 55. P. 526-542.
  16. Goda H., Shimada Y., Asami T. et al. (2002) Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol. P. 130. P. 1319-1334.
  17. Guilfoyle T. J. (1999) Auxin-regulated genes and promoters. In: Eds. P. J. J. Hooykaas, M. A. Hall, K. R. Libbenga. Biochemistry and Molecular Biology of Plant Hormones. Elsevier, Amsterdam. P. 423-459.
  18. Guilfoyle T. J., McClure B. A., Gee M. A., Hagen G. (1993) Auxin-regulated transcription. Aust. J. Plant Physiol. Vol. 20. P. 489-502.
  19. Hagen G., Guilfoyle T. J. (1985) Rapid induction of selective transcription by auxins. Mol. Cell. Biol. Vol. 5. P. 1197-1203.
  20. Hagen G., Guilfoyle T. (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol. Biol. Vol. 49. P. 373-385.
  21. Hagen G., Kleinschmidt A., Guilfoyle T. (1984) Auxinregulated gene expression in intact soybean hypocotyl and excised hypocotyl sections. Planta. Vol. 162. P. 147-153.
  22. Hagen G., Martin G., Li Y., Guilfoyle T. J. (1991) Auxin-induced expression of the soybean GH3 promoter in transgenic tobacco plants. Plant Mol. Biol. Vol. 17. P. 567-579.
  23. Hao G.-F., Yang G.-F. (2010) The role of Phe82 and Phe351 in auxin-induced substrate perception by TIR1 ubiquitin ligase: A novel insight from molecular dynamics simulations. PLoS ONE 5 (5): e10742. doi: 10.1371/journal.pone.0010742.
  24. Ku S. J., Park J. Y., Ha S. B., Kim J. (2009) Overexpression of IAA1 with domain II mutation impairs cell elongation and cell division in inflorescences and leaves of Arabidopsis. J. Plant Physiol. Vol. 166. P. 548-553.
  25. Lee D. J., Park J. W., Lee H. W., Kim J. (2009) Genome-wide analysis of the auxin-responsive transcriptome downstream of iaa1 and its expression analysis reveal the diversity and complexity of auxin-regulated gene expression. J. Ex. Botany. Vol. 60. P. 3935-3957.
  26. Liscum E., and Reed, J. W. (2001) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol. Biol. Vol. 49. P. 387-400.
  27. McClure B. A., Guilfoyle T. J. (1987) Characterization of a class of small auxininducible soybean polyadenylated RNAs. Plant Mol. Biol. Vol. 9. P. 611-623.
  28. McClure B. A., Guilfoyle T. (1989) Rapid redistribution of auxin-regulated RNAs during gravitropism. Science. Vol. 243. P. 91-93.
  29. McClure B. A., Hagen G., Brown C. S. et al. (1989) Transcription, organization, and sequence of an auxin-regulated cluster in soybean. Plant Cell. Vol. 1. P. 229-239.
  30. Mockaitis K., Estelle M. (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol. Vol. 24. P. 55-80.
  31. Murashige T., Skoog F. (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant. Vol. 15. P. 473-497
  32. Muto H., Watahiki M. K., Nakamoto D. et al. (2007) Specificity and similarity of functions of the Aux/IAA genes in auxin signaling of Arabidopsis revealed by promoter-exchange experiments among MSG2/IAA19, AXR2/IAA7, and SLR/IAA14. Plant Physiology. Vol. 144. P. 187-196.
  33. Nebenführ A., White T. J., Lomax T. L. (2000) The diageotropica mutation alters auxin induction of a subset of the Aux/IAA gene family in tomato. Plant Mol. Biol. Vol. 44. P. 73-84.
  34. Oeller P. W., Keller J. A., Parks J. E. et al. (1993) Structural characterization of the early indoleacetic acid-inducible genes, PS-IAA4/5 and PS-IAA6, of pea (Pisum sativum L.). J. Mol. Biol. 1993. Vol. 233. P. 789-798.
  35. Ouellet F., Overvoorde P. J., Theologis A. (2001) IAA17/AXR3: biochemical insight into an auxin mutant phenotype. Plant Cell. Vol. 13. P. 829-841.
  36. Patel D., Franklin K. A. (2009) Temperature-regulation of plant architecture. Plant Signaling & Behavior. Vol. 4. P. 577-579.
  37. Park J. Y., Kim H. J., Kim J. (2002) Mutation in domain II of IAA1 confers diverse auxin-related phenotypes and represses auxin-activated expression of Aux/IAA genes in steroid regulator-inducible system. Plant Journal. Vol. 32. P. 669-683.
  38. Paponov I. A., Paponova M., Tealea W. et al. (2008) Comprehensive Transcriptome Analysis of Auxin Responses in Arabidopsis. Molecular Plant. Vol. 1. P. 321-337.
  39. Pufky J., Qiu Y., Rao M. V. et al. (2003) The auxininduced transcriptome for etiolated Arabidopsis seedlings using a structure/function approach. Functional Integrative Genomics. Vol. 3. P. 135-143.
  40. Redman J. C., Haas B. J., Tanimoto G., Town C. D. (2004) Development and evaluation of an Arabidopsis whole genome Affymetrix probe array. Plant Journal. Vol. 38. P. 545-561.
  41. Roux C., Perrot-Rechenmann C. (1997) Isolation by differ ential display and characterization of a tobacco auxin-responsive cDNA Nt-gh3, related to GH3. FEBS Letters. Vol. 419. P. 131-136.
  42. Scherer G., Zahn M., Callis J., Jones A. (2007) A role for phospholipase A in auxin-regulated gene expression. FEBS Letters. Vol. 581. P. 4205-4211.
  43. Staswick P. E., Tiryaki I., Rowe M. (2002) Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell. Vol. 14. P. 1405-1415.
  44. Staswick P. E., Serban B., Rowe M. et al. (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell. Vol. 17. P. 616-627.
  45. Takase T., Nakazawa M., Ishikawa A. et al. (2004) ydk1-D, an auxin-responsive GH3 mutant that is involved in hypocotyl and root elongation. Plant Journal. Vol. 37. P. 471-483.
  46. Tatematsu K., Kumagai S., Muto H. et al. (2004) MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell. Vol. 19. P. 379-393.
  47. Theologis A., Huynh T. V., Davis R. W. (1985) Rapid induction of specific mRNAs by auxin in pea epicotyl tissue. J. Mol. Biol. Vol. 183. P. 53-68.
  48. Tian Q., Reed J. W. (1999) Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development. Vol. 126. P. 711-721.
  49. Tian Q., Uhlir N. J., Reed J. W. (2002) Arabidopsis SHY2/IAA3 inhibits auxin-regulated gene expression. Plant Cell. Vol. 14. P. 301-319.
  50. Ulmasov T., Hagen G., Guilfoyle T. J. (1997) ARF1, a transcription factor that binds to auxin response elements. Science. Vol. 276. P. 1865-1868
  51. Ulmasov T., Murfett J., Hagen G., Guilfoyle T. J. (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell. Vol. 9. P. 1963-1971.
  52. Walker J. C., Key J. L. (1982) lsolation of cloned cDNAs to auxin-responsive poly (A+) RNAs of elongating soybean hypocotyl. PNAS. Vol. 79. P. 7185-7189.
  53. Wright R. M., Hagen G., Guilfoyle T. J. (1987) An auxininduced polypeptide in dicotyledonous plants. Plant Mol. Biol. Vol. 9. P. 625-634.
  54. Yang T., Poovaiah B. W. (2000) Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action. J. Biol. Chem. Vol. 275. P. 3137-3143.
  55. Yang X., Lee S., So J. H. et. al. (2004) The IAA1 protein is encoded by AXR5 and is a substrate of SCFTIR1. Plant Journal. Vol. 40. P. 772-782.
  56. Zhang Z., Wang M., Li Z., Li Q., He Z. (2008) Arabidopsis GH3.5 regulates salicylic acid-dependent and both NPR1-dependent and independent defense responses. Plant Signaling and Behavior. Vol. 3. P. 537-542.

Copyright (c) 2014 Shishova M.F., Pahler M., Stahl F., Scherer G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies