Gene expression analysis of genes coding key enzymes of cadmium detoxification in garden pea symbiotic nodules

Cover Page

Cite item

Full Text

Abstract

Background. Cadmium is one of the most wide-ranging and dangerous pollutants for all living organisms, including plants. Currently, the mechanisms of cadmium accumulation in plant tissues and plant tolerance to its toxic effect are intensively studied. Metal-binding ligands, such as glutathione and phytochelatins, are one of the most important components in cadmium homeostasis in plants. Materials and methods. The pea line SGE and mutant SGECdt differed by cadmium tolerance were used. Gene expression for γ-glutamylcysteine synthetase (GSH1), glutathione synthetase (GSHS), homoglutathione synthetase (hGSHS) and phytochelatin synthase (PsPCS) was measured in pea nodules using realtime PCR. Results. GSH1 expression was slightly influenced by cadmium cloride. GSHS expression was upregulated in SGE and slightly downregulated in SGECdt. Cadmium cloride caused increased expression of hGSHS and PsPCS in both pea line SGE and the mutant SGECdt. Conclusion. Increased tolerance to cadmium of symbiotic nodules in the mutant SGECdt is not linked with expression pattern of analyzed genes.

About the authors

Olga Alekseyevna Kulaeva

All-Russia Research Institute for Agricultural Microbiology RAAS

Email: koa1983@yandex.ru
Scientific Researcher, Laboratory of Molecular and Cellular Biology

Viktor Yevgenyevich Tsyganov

All-Russia Research Institute for Agricultural Microbiology RAAS

Email: tsyganov@arriam.spb.ru
Head of the Laboratory of Molecular and Cellular Biology

References

  1. Кулаева О. А. (2012) Генетический анализ устойчивости гороха посевного (Pisum sativum L.) к кадмию. Автореф. дис.. канд. биол. наук. Санкт-Петербург.
  2. Малков Н. В., Зиновкина Н. Ю., Сафронова В. И., Белимов А. А. (2012) Повышение устойчивости бобово-ризобиального симбиоза к кадмию с помощью ризосферных бактерий, содержащих АЦК деаминазу. Достижения науки и техники АПК. Вып. 9: С. 53-57.
  3. Серегин И., Иванов В. (2001) Физиологические аспекты токсического действия кадмия и свинца на высшие растения. Физиология растений. Т. 48 (4): С. 606-630.
  4. Серегин И. (2001) Фитохелатины и их роль в детоксикации кадмия у высших растений. Успехи биологической химии. Т. 41: С. 283-300.
  5. Цыганов В. Е., Заболотный A. И., Будкевич Т. А. и др. (2010) Влияние кадмия на развитие и функционирование клубеньков у лядвенца рогатого (Lotus corniculatus L.) и лядвенца японского (Lotus japonicus (Regel.) K. Larsen). Ботаника (исследования). Вып. 38: С. 343-354.
  6. Balestrasse K. B., Benavides M. P., Gallego S. M., Tomaro M. L. (2003) Effect of cadmium stress on nitrogen metabolism in nodule and roots of soybean plants. Funct. Plant. Biol. Vol. 30: P. 57-64.
  7. Chen Y., He Y., Yang Y., Yu Y. (2003) Effect of cadmium on nodulation and N2-fixation of soybean in contaminated soils. Chemosphere. Vol. 50: P. 781-787.
  8. Clemens S., Kim E. J., Neumann D., Schroeder J. I. (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J. Vol. 18: P. 3325-3333.
  9. El Msehli S., Lambert A., Baldacci-Cresp F. (2011) Crucial role of (homo)glutathione in nitrogen fixation in Medicago truncatula nodules. New Phytol. Vol. 192: P. 496-506.
  10. Estrella-Gomez N. E., Sauri-Duch E., Zapata-Perez O., Santamaria J. M. (2012) Glutathione plays a role in protecting leaves of Salvinia minima from Pb 2+ damage associated with changes in the expression of SmGS genes and increased activity of GS. Environ. Exp. Bot. Vol. 75: P. 188-194.
  11. Frendo P., Baldacci-Cresp F., Benyamina S. M., Puppo A. (2013) Glutathione and plant response to the biotic environment. Free Radical Bio. Med. Vol. 65: P. 724-730.
  12. Goldsbrough P. B. (1998) Metal Tolerance in plants: the role of phytochelatins and metallothioneins. In: Terry N., Banuelos G. S., eds. Phytoremediation of trace elements. CRC Press; p. 221-233.
  13. Gill S. S., Khan N. A., Tuteja N. (2012) Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci. Vol. 182: P. 112-120.
  14. Grill E., Winnacker E. L., Zenk M. H. (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science. Vol. 230: P. 674-676.
  15. Gupta D. K., Huang H. G., Yang X. E. (2010) The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. J. Hazard. Mater. Vol. 177: P. 437-444.
  16. Han S. H., Lee J. C., Oh C. Y. (2006) Alleviation of Cd toxicity by composted sewage sludge in Cd-treated Schmidt birch (Betula schmidtii) seedlings. Chemosphere. Vol. 65 (4): P. 541-546.
  17. Iturbe-Ormaetxe I., Heras B., Matamoros M. et al. (2002) Cloning and functional characterization of a homoglutathione synthetase from pea nodules. Physiologia plantarum. Vol. 115 (1): P. 69-73.
  18. Kondo N., Imai K., Isobe M. et al. (1984) Cadystin A and B, major unit peptides comprising cadmium binding peptides induced in a fission yeast-separation, revision of structures and synthesis. Tetrahedron Lett. Vol. 25: P. 3869-3872.
  19. Kosterin O., Rozov S. (1993) Mapping of the new mutation blb and the problem of integrity of linkage group I. Pisum Genetics. Vol. 25: P. 27-31.
  20. Kulaeva O. A., Tsyganov V. E. (2011) Molecular-genetic basis of cadmium tolerance and accumulation in higher plants. Russian journal of genetics: applied research. Vol. 1 (5): P. 349-360.
  21. Kulaeva O. A., Tsyganov B. E. (2013) Fine mapping of a cdt locus mutation that leads to an increase in the tolerance of pea (Pisum sativum L.) to cadmium. Russian journal of genetics: applied research. Vol. 3 (2): P. 120-126.
  22. Kumar S., Asif M. H., Chakrabarty D. et al. (2013) Differential expression of rice lambda class GST gene family members during plant growth, development, and in response to stress conditions. Plant Mol. Biol. Rep. Vol. 31: P. 569-580.
  23. Lee S., Korban S. S. (2002) Transcriptional regulation of Arabidopsis thaliana phytochelatin synthase (AtPCS1) by cadmium during early stages of plant development. Planta. Vol. 215: P. 689-693.
  24. Liu Z., Gu C., Chen F. et al. (2012) Heterologous expression of a Nelumbo nucifera phytochelatin synthase gene enhances cadmium tolerance in Arabidopsis thaliana. Appl. Biochem. Biotech. Vol. 166: P. 722-734.
  25. Loeffler S., Hochberger A., Grill E. et al. (1989) Termination of the phytochelatin synthase reaction through sequestration of heavy metals by the reaction product. FEB Lett. Vol. 258: P. 42-46.
  26. Loscos, J., Matamoros, M. A., Becana, M. (2008) Ascorbate and homoglutathione metabolism in common bean nodules under stress conditions and during natural senescence. Plant Physiol. Vol. 146: P. 1282-1292.
  27. Matamoros M. A., Moran J. F., Iturbe-Ormaetxe I. et al. (1999) Glutathione and homoglutathione synthesis in legume root nodules. Plant Physiol. Vol. 121: P. 879-888.
  28. May M. J., Vernoux T., Sanchez-Fernandez R., et al. (1998) Evidence for posttranscriptional activation of γ-glutamylcysteine synthetase during plant stress responses. Proc. Natl. Acad. Sci. USA. Vol. 95: P. 12049-12054.
  29. Mohamed A. A., Castagna A., Ranieri A., di Toppi L. S. (2012) Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant Physiol. Biochem. Vol. 57: P. 15-22.
  30. Moran J. F., Iturbe-Ormaetxe I., Matamoros M. A. (2000) Glutathione and homoglutathione synthetases of legume nodules. Cloning, expression, and subcellular localization. Plant Physiol. Vol. 124 (3): P. 1381-1392.
  31. Noctor G., Mhamdi A., Chaouch S. et al. (2012) Glutathione in plants: an integrated overview. Plant Cell Environ. Vol. 35: P. 454-484.
  32. Oven M., Raith K., Neubert R. H. et al. (2001) Homo-phytochelatins are synthesized in response to cadmium in azuki beans. Plant Physiol. Vol. 126: P. 1275-1280.
  33. Oven M., Page J. E., Zenk M. H., Kutchan T. M. (2002) Molecular characterization of the homo-phytochelatin synthase of soybean Glycine max. J. Biol. Chem. Vol. 277: P. 4747-54.
  34. Park J., Song W., Ko D. et al. (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J. Vol. 69: P. 278-288.
  35. Pyngrope S., Bhoomika K., Dubey R. S. (2013) Reactive oxygen species, ascorbate-glutathione pool, and enzymes of their metabolism in drought-sensitive and tolerant indica rice (Oryza sativa L.) seedlings subjected to progressing levels of water deficit. Protoplasma. Vol. 250: P. 585-600.
  36. Ramos J., Clemente M. R., Naya L. et al. (2007) Phytochelatin synthases of the model legume Lotus japonicus. A small multigene family with differential response to cadmium and alternatively spliced variants. Plant Physiol. Vol. 143: P. 1110-1118.
  37. Ramos J., Naya L., Gay M. (2008) Functional characterization of an unusual phytochelatin synthase, LjPCS3, of Lotus japonicus. Plant Physiol. Vol. 148: P. 536-545.
  38. Reese R., Wagner G. (1987) Effects of buthionine sulfoximine on Cd-binding peptide levels in suspension-cultured tobacco cells treated with Cd, Zn, or Cu. Plant Physiol. Vol. 84: P. 574-577.
  39. Rivera-Becerril F., Calantzis C., Turnau K. et al. (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J. Exp. Bot. Vol. 53: P. 1177-1185.
  40. Rivera-Becerril F., van Tuinen D., Martin-Laurent F. et al. (2005) Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. Mycorrhiza. Vol. 16: P. 51-60.
  41. Sanita di Toppi L., Gabbrielli R. (1999) Response to cadmium in higher plants. Environ. Exp. Bot. Vol. 41: P. 105-130.
  42. Skeffington R. A., Bradshaw A. D. (1980). Nitrogen fixation by plants grown on reclaimed china clay waste. J. Appl. Ecol. Vol. 17: P. 469-477.
  43. Son K. H., Kim D. Y., Koo N. et al. (2012) Detoxification through phytochelatin synthesis in Oenothera odorata exposed to Cd solutions. Environ. Exp. Bot. Vol. 75: P. 9-15.
  44. Tsyganov V. E., Zhernakov A. I., Khodorenko A. V. et al. (2005) Mutational analysis to study the role of genetic factors in pea adaptation to stresses during development its symbioses with Rhizobium and mycorrhizal fungi. In Wang Y. P., Lin M., Tian Z. X. et al. eds. Bacterial nitrogen fixation, sustainable agriculture and the environment. Proceedings of the 14th International Nitrogen Fixation Congress. Springer. P. 279-281.
  45. Tsyganov V., Belimov A., Borisov A. (2007) A chemically induced new pea (Pisum sativum) mutant SGECdt with increased tolerance to, and accumulation of cadmium. Ann. Bot. Vol. 99: P. 227-237.
  46. Tsyganov V. E., Kulaeva O. A., Knox M. R. (2013) Using of SSAP analysis for primary localization of mutation cdt (cadmium tolerance) in pea linkage group VI. Russian journal of genetics: applied research. Vol. 3 (2): P. 152-155.
  47. Xiang C., Oliver D. (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell. Vol. 10: P. 1539-1550.
  48. Xiang, C., Werner, B. L., Christensen E. M., Oliver, D. J. (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol. Vol. 126: P. 564-574.
  49. Zagorchev L., Seal Ch., Kranner I., Odjakova M. (2013) A central role for thiols in plant tolerance to abiotic stress. Int. J. Mol. Sci. Vol. 14: P. 7405-7432.

Copyright (c) 2014 Kulaeva O.A., Tsyganov V.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies